import gradio as gr import requests import numpy as np import io import wave # Function to send audio to Groq API and get transcription def transcribe(audio_data): # Convert the NumPy audio array to bytes audio_bytes = io.BytesIO() # Convert NumPy array to WAV format (use appropriate rate, channels, etc.) with wave.open(audio_bytes, "wb") as wf: wf.setnchannels(1) # Mono channel wf.setsampwidth(2) # 16-bit audio wf.setframerate(16000) # Assuming 16kHz sample rate wf.writeframes(audio_data.tobytes()) audio_bytes.seek(0) # Rewind to the beginning # Groq API endpoint for audio transcription groq_api_endpoint = "https://api.groq.com/openai/v1/audio/transcriptions" # Replace 'YOUR_GROQ_API_KEY' with your actual Groq API key headers = { "Authorization": "Bearer YOUR_GROQ_API_KEY", } # Prepare the files and data for the request files = { 'file': ('audio.wav', audio_bytes, 'audio/wav'), } data = { 'model': 'whisper-large-v3-turbo', # Specify the model to use 'response_format': 'json', # Desired response format 'language': 'en', # Language of the audio } # Send audio to Groq API response = requests.post(groq_api_endpoint, headers=headers, files=files, data=data) # Parse response if response.status_code == 200: result = response.json() return result.get("text", "No transcription available.") else: return f"Error: {response.status_code}, {response.text}" # Gradio interface iface = gr.Interface( fn=transcribe, inputs=gr.Audio(source="microphone", type="numpy"), # Changed to numpy outputs="text", title="Voice to Text Converter", description="Record your voice, and it will be transcribed into text using Groq API." ) iface.launch()