Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,34 @@
|
|
1 |
import gradio as gr
|
2 |
import requests
|
|
|
|
|
|
|
3 |
|
4 |
# Function to send audio to Groq API and get transcription
|
5 |
-
def transcribe(
|
6 |
-
#
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Groq API endpoint for audio transcription
|
11 |
groq_api_endpoint = "https://api.groq.com/openai/v1/audio/transcriptions"
|
12 |
-
|
13 |
# Replace 'YOUR_GROQ_API_KEY' with your actual Groq API key
|
14 |
headers = {
|
15 |
-
"Authorization": "Bearer
|
16 |
}
|
17 |
-
|
18 |
# Prepare the files and data for the request
|
19 |
files = {
|
20 |
-
'file': ('audio.wav',
|
21 |
}
|
22 |
data = {
|
23 |
'model': 'whisper-large-v3-turbo', # Specify the model to use
|
@@ -38,7 +49,7 @@ def transcribe(audio_path):
|
|
38 |
# Gradio interface
|
39 |
iface = gr.Interface(
|
40 |
fn=transcribe,
|
41 |
-
inputs=gr.Audio(type="
|
42 |
outputs="text",
|
43 |
title="Voice to Text Converter",
|
44 |
description="Record your voice, and it will be transcribed into text using Groq API."
|
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
+
import numpy as np
|
4 |
+
import io
|
5 |
+
import wave
|
6 |
|
7 |
# Function to send audio to Groq API and get transcription
|
8 |
+
def transcribe(audio_data):
|
9 |
+
# Convert the NumPy audio array to bytes
|
10 |
+
audio_bytes = io.BytesIO()
|
11 |
+
|
12 |
+
# Convert NumPy array to WAV format (use appropriate rate, channels, etc.)
|
13 |
+
with wave.open(audio_bytes, "wb") as wf:
|
14 |
+
wf.setnchannels(1) # Mono channel
|
15 |
+
wf.setsampwidth(2) # 16-bit audio
|
16 |
+
wf.setframerate(16000) # Assuming 16kHz sample rate
|
17 |
+
wf.writeframes(audio_data.tobytes())
|
18 |
+
|
19 |
+
audio_bytes.seek(0) # Rewind to the beginning
|
20 |
|
21 |
# Groq API endpoint for audio transcription
|
22 |
groq_api_endpoint = "https://api.groq.com/openai/v1/audio/transcriptions"
|
23 |
+
|
24 |
# Replace 'YOUR_GROQ_API_KEY' with your actual Groq API key
|
25 |
headers = {
|
26 |
+
"Authorization": "Bearer YOUR_GROQ_API_KEY",
|
27 |
}
|
28 |
+
|
29 |
# Prepare the files and data for the request
|
30 |
files = {
|
31 |
+
'file': ('audio.wav', audio_bytes, 'audio/wav'),
|
32 |
}
|
33 |
data = {
|
34 |
'model': 'whisper-large-v3-turbo', # Specify the model to use
|
|
|
49 |
# Gradio interface
|
50 |
iface = gr.Interface(
|
51 |
fn=transcribe,
|
52 |
+
inputs=gr.Audio(source="microphone", type="numpy"), # Changed to numpy
|
53 |
outputs="text",
|
54 |
title="Voice to Text Converter",
|
55 |
description="Record your voice, and it will be transcribed into text using Groq API."
|