Spaces:
Sleeping
Sleeping
File size: 5,542 Bytes
bcd1dcf 1507087 bcd1dcf 1507087 bcd1dcf 78a2aef bcd1dcf 1507087 6b80a5d bcd1dcf 78a2aef bcd1dcf 78a2aef bcd1dcf 78a2aef bcd1dcf 78a2aef bcd1dcf 78a2aef bcd1dcf 78a2aef bcd1dcf 78a2aef bcd1dcf 78a2aef bcd1dcf 042bc75 bcd1dcf 19e07c9 bcd1dcf 19e07c9 bcd1dcf 612bb17 78a2aef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import gradio as gr
import requests
from fpdf import FPDF
import nltk
import os
import tempfile
from nltk.tokenize import sent_tokenize
import random
import re
# Attempt to download punkt tokenizer
try:
nltk.download("punkt")
except:
print("NLTK punkt tokenizer download failed. Using custom tokenizer.")
def custom_sent_tokenize(text):
return text.split(". ")
def transcribe(audio_path):
with open(audio_path, "rb") as audio_file:
audio_data = audio_file.read()
groq_api_endpoint = "https://api.groq.com/openai/v1/audio/transcriptions"
headers = {
"Authorization": "Bearer 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", # Replace with your actual API key
}
files = {
'file': ('audio.wav', audio_data, 'audio/wav'),
}
data = {
'model': 'whisper-large-v3-turbo',
'response_format': 'json',
'language': 'en',
}
response = requests.post(groq_api_endpoint, headers=headers, files=files, data=data)
if response.status_code == 200:
result = response.json()
transcript = result.get("text", "No transcription available.")
return generate_notes(transcript)
else:
error_msg = response.json().get("error", {}).get("message", "Unknown error.")
print(f"API Error: {error_msg}")
return create_error_pdf(f"API Error: {error_msg}")
def generate_notes(transcript):
try:
sentences = sent_tokenize(transcript)
except LookupError:
sentences = custom_sent_tokenize(transcript)
# Extract key sentences for generating questions
important_sentences = get_important_sentences(sentences)
# Generate long questions, short questions, and MCQs
long_questions = [f"What is meant by '{sentence}'?" for sentence in important_sentences[:5]]
short_questions = [f"Define '{sentence.split()[0]}'." for sentence in important_sentences[:5]]
mcqs = generate_mcqs(important_sentences)
pdf_path = create_pdf(transcript, long_questions, short_questions, mcqs)
return pdf_path
def get_important_sentences(sentences):
# Prioritize sentences that contain nouns or verbs to be more relevant
important_sentences = []
for sentence in sentences:
# Simple rule: sentences with nouns/verbs are considered important
if len(re.findall(r'\b(NN|VB)\b', sentence)): # Using POS tags to detect nouns/verbs
important_sentences.append(sentence)
return important_sentences[:5] # Limit to top 5 important sentences
def generate_mcqs(important_sentences):
mcqs = []
for sentence in important_sentences:
# Generate MCQs from meaningful sentences
key_terms = sentence.split() # Split sentence into words (simple tokenization)
correct_answer = random.choice(key_terms) # Randomly select a key term from the sentence
options = [correct_answer] + random.sample(key_terms, 3) # Create multiple choice options
random.shuffle(options) # Shuffle options
mcq = {
"question": f"What is '{correct_answer}' in the context of the sentence?",
"options": options,
"answer": correct_answer
}
mcqs.append(mcq)
return mcqs
def create_pdf(transcript, long_questions, short_questions, mcqs):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", "B", 16)
pdf.cell(200, 10, "Transcription Notes", ln=True, align="C")
pdf.set_font("Arial", "", 12)
pdf.multi_cell(0, 10, f"Transcription:\n{transcript.encode('latin1', 'replace').decode('latin1')}\n\n")
# Add long questions section
pdf.set_font("Arial", "B", 14)
pdf.cell(200, 10, "Long Questions", ln=True)
pdf.set_font("Arial", "", 12)
for question in long_questions:
pdf.multi_cell(0, 10, f"- {question.encode('latin1', 'replace').decode('latin1')}\n")
# Add short questions section
pdf.set_font("Arial", "B", 14)
pdf.cell(200, 10, "Short Questions", ln=True)
pdf.set_font("Arial", "", 12)
for question in short_questions:
pdf.multi_cell(0, 10, f"- {question.encode('latin1', 'replace').decode('latin1')}\n")
# Add MCQs section
pdf.set_font("Arial", "B", 14)
pdf.cell(200, 10, "Multiple Choice Questions (MCQs)", ln=True)
pdf.set_font("Arial", "", 12)
for mcq in mcqs:
pdf.multi_cell(0, 10, f"Q: {mcq['question'].encode('latin1', 'replace').decode('latin1')}")
for option in mcq["options"]:
pdf.multi_cell(0, 10, f" - {option.encode('latin1', 'replace').decode('latin1')}")
pdf.multi_cell(0, 10, f"Answer: {mcq['answer'].encode('latin1', 'replace').decode('latin1')}\n")
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf:
pdf.output(temp_pdf.name)
pdf_path = temp_pdf.name
return pdf_path
def create_error_pdf(message):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", "B", 16)
pdf.cell(200, 10, "Error Report", ln=True, align="C")
pdf.set_font("Arial", "", 12)
pdf.multi_cell(0, 10, message.encode('latin1', 'replace').decode('latin1'))
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf:
pdf.output(temp_pdf.name)
error_pdf_path = temp_pdf.name
return error_pdf_path
iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(type="filepath"),
outputs=gr.File(label="Download PDF with Notes or Error Report"),
title="Voice to Text Converter and Notes Generator",
)
iface.launch()
|