Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,13 @@
|
|
1 |
import gradio as gr
|
2 |
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
# Function to send audio to Groq API and get transcription
|
5 |
def transcribe(audio_path):
|
@@ -10,38 +18,101 @@ def transcribe(audio_path):
|
|
10 |
# Groq API endpoint for audio transcription
|
11 |
groq_api_endpoint = "https://api.groq.com/openai/v1/audio/transcriptions"
|
12 |
|
13 |
-
# Replace 'YOUR_GROQ_API_KEY' with your actual Groq API key
|
14 |
headers = {
|
15 |
"Authorization": "Bearer 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",
|
16 |
}
|
17 |
|
18 |
-
# Prepare the files and data for the request
|
19 |
files = {
|
20 |
'file': ('audio.wav', audio_data, 'audio/wav'),
|
21 |
}
|
22 |
data = {
|
23 |
-
'model': 'whisper-large-v3-turbo',
|
24 |
-
'response_format': 'json',
|
25 |
-
'language': 'en',
|
26 |
}
|
27 |
|
28 |
# Send audio to Groq API
|
29 |
response = requests.post(groq_api_endpoint, headers=headers, files=files, data=data)
|
30 |
|
31 |
-
# Parse response
|
32 |
if response.status_code == 200:
|
33 |
result = response.json()
|
34 |
-
|
|
|
35 |
else:
|
36 |
return f"Error: {response.status_code}, {response.text}"
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
# Gradio interface
|
39 |
iface = gr.Interface(
|
40 |
fn=transcribe,
|
41 |
-
inputs=gr.Audio(type="filepath"),
|
42 |
-
outputs="
|
43 |
-
title="Voice to Text Converter
|
44 |
-
|
45 |
)
|
46 |
|
47 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
+
from fpdf import FPDF
|
4 |
+
import nltk
|
5 |
+
from nltk.tokenize import sent_tokenize
|
6 |
+
import random
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Ensure nltk resources are downloaded
|
10 |
+
nltk.download("punkt")
|
11 |
|
12 |
# Function to send audio to Groq API and get transcription
|
13 |
def transcribe(audio_path):
|
|
|
18 |
# Groq API endpoint for audio transcription
|
19 |
groq_api_endpoint = "https://api.groq.com/openai/v1/audio/transcriptions"
|
20 |
|
|
|
21 |
headers = {
|
22 |
"Authorization": "Bearer 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",
|
23 |
}
|
24 |
|
|
|
25 |
files = {
|
26 |
'file': ('audio.wav', audio_data, 'audio/wav'),
|
27 |
}
|
28 |
data = {
|
29 |
+
'model': 'whisper-large-v3-turbo',
|
30 |
+
'response_format': 'json',
|
31 |
+
'language': 'en',
|
32 |
}
|
33 |
|
34 |
# Send audio to Groq API
|
35 |
response = requests.post(groq_api_endpoint, headers=headers, files=files, data=data)
|
36 |
|
|
|
37 |
if response.status_code == 200:
|
38 |
result = response.json()
|
39 |
+
transcript = result.get("text", "No transcription available.")
|
40 |
+
return generate_notes(transcript)
|
41 |
else:
|
42 |
return f"Error: {response.status_code}, {response.text}"
|
43 |
|
44 |
+
# Function to generate notes and questions
|
45 |
+
def generate_notes(transcript):
|
46 |
+
# Split transcript into sentences
|
47 |
+
sentences = sent_tokenize(transcript)
|
48 |
+
|
49 |
+
# Generate long and short questions
|
50 |
+
long_questions = [f"What is meant by '{sentence}'?" for sentence in sentences[:5]]
|
51 |
+
short_questions = [f"Define '{sentence.split()[0]}'." for sentence in sentences[:5]]
|
52 |
+
|
53 |
+
# Generate MCQs
|
54 |
+
mcqs = []
|
55 |
+
for sentence in sentences[:5]:
|
56 |
+
mcq = {
|
57 |
+
"question": f"What is '{sentence.split()[0]}'?",
|
58 |
+
"options": [sentence.split()[0]] + random.sample(["Option 1", "Option 2", "Option 3"], 3),
|
59 |
+
"answer": sentence.split()[0]
|
60 |
+
}
|
61 |
+
mcqs.append(mcq)
|
62 |
+
|
63 |
+
# Create PDF
|
64 |
+
pdf_path = create_pdf(transcript, long_questions, short_questions, mcqs)
|
65 |
+
return pdf_path
|
66 |
+
|
67 |
+
# Function to create and save PDF
|
68 |
+
def create_pdf(transcript, long_questions, short_questions, mcqs):
|
69 |
+
pdf = FPDF()
|
70 |
+
pdf.add_page()
|
71 |
+
|
72 |
+
# Title
|
73 |
+
pdf.set_font("Arial", "B", 16)
|
74 |
+
pdf.cell(200, 10, "Transcription Notes", ln=True, align="C")
|
75 |
+
|
76 |
+
# Transcription
|
77 |
+
pdf.set_font("Arial", "", 12)
|
78 |
+
pdf.multi_cell(0, 10, f"Transcription:\n{transcript}\n\n")
|
79 |
+
|
80 |
+
# Long Questions
|
81 |
+
pdf.set_font("Arial", "B", 14)
|
82 |
+
pdf.cell(200, 10, "Long Questions", ln=True)
|
83 |
+
pdf.set_font("Arial", "", 12)
|
84 |
+
for question in long_questions:
|
85 |
+
pdf.multi_cell(0, 10, f"- {question}\n")
|
86 |
+
|
87 |
+
# Short Questions
|
88 |
+
pdf.set_font("Arial", "B", 14)
|
89 |
+
pdf.cell(200, 10, "Short Questions", ln=True)
|
90 |
+
pdf.set_font("Arial", "", 12)
|
91 |
+
for question in short_questions:
|
92 |
+
pdf.multi_cell(0, 10, f"- {question}\n")
|
93 |
+
|
94 |
+
# MCQs
|
95 |
+
pdf.set_font("Arial", "B", 14)
|
96 |
+
pdf.cell(200, 10, "Multiple Choice Questions (MCQs)", ln=True)
|
97 |
+
pdf.set_font("Arial", "", 12)
|
98 |
+
for mcq in mcqs:
|
99 |
+
pdf.multi_cell(0, 10, f"Q: {mcq['question']}")
|
100 |
+
for option in mcq["options"]:
|
101 |
+
pdf.multi_cell(0, 10, f" - {option}")
|
102 |
+
pdf.multi_cell(0, 10, f"Answer: {mcq['answer']}\n")
|
103 |
+
|
104 |
+
# Save PDF
|
105 |
+
pdf_path = "/mnt/data/transcription_notes.pdf"
|
106 |
+
pdf.output(pdf_path)
|
107 |
+
|
108 |
+
return pdf_path
|
109 |
+
|
110 |
# Gradio interface
|
111 |
iface = gr.Interface(
|
112 |
fn=transcribe,
|
113 |
+
inputs=gr.Audio(type="filepath"),
|
114 |
+
outputs=gr.File(label="Download PDF with Notes and Questions"),
|
115 |
+
title="Voice to Text Converter and Notes Generator",
|
|
|
116 |
)
|
117 |
|
118 |
+
iface.launch()
|