Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,6 +6,7 @@ import os
|
|
| 6 |
import tempfile
|
| 7 |
from nltk.tokenize import sent_tokenize
|
| 8 |
import random
|
|
|
|
| 9 |
|
| 10 |
# Attempt to download punkt tokenizer
|
| 11 |
try:
|
|
@@ -50,20 +51,42 @@ def generate_notes(transcript):
|
|
| 50 |
except LookupError:
|
| 51 |
sentences = custom_sent_tokenize(transcript)
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
mcqs = []
|
| 57 |
-
for sentence in
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
mcq = {
|
| 59 |
-
"question": f"What is '{
|
| 60 |
-
"options":
|
| 61 |
-
"answer":
|
| 62 |
}
|
| 63 |
mcqs.append(mcq)
|
| 64 |
-
|
| 65 |
-
pdf_path = create_pdf(transcript, long_questions, short_questions, mcqs)
|
| 66 |
-
return pdf_path
|
| 67 |
|
| 68 |
def create_pdf(transcript, long_questions, short_questions, mcqs):
|
| 69 |
pdf = FPDF()
|
|
@@ -75,18 +98,21 @@ def create_pdf(transcript, long_questions, short_questions, mcqs):
|
|
| 75 |
pdf.set_font("Arial", "", 12)
|
| 76 |
pdf.multi_cell(0, 10, f"Transcription:\n{transcript.encode('latin1', 'replace').decode('latin1')}\n\n")
|
| 77 |
|
|
|
|
| 78 |
pdf.set_font("Arial", "B", 14)
|
| 79 |
pdf.cell(200, 10, "Long Questions", ln=True)
|
| 80 |
pdf.set_font("Arial", "", 12)
|
| 81 |
for question in long_questions:
|
| 82 |
pdf.multi_cell(0, 10, f"- {question.encode('latin1', 'replace').decode('latin1')}\n")
|
| 83 |
|
|
|
|
| 84 |
pdf.set_font("Arial", "B", 14)
|
| 85 |
pdf.cell(200, 10, "Short Questions", ln=True)
|
| 86 |
pdf.set_font("Arial", "", 12)
|
| 87 |
for question in short_questions:
|
| 88 |
pdf.multi_cell(0, 10, f"- {question.encode('latin1', 'replace').decode('latin1')}\n")
|
| 89 |
|
|
|
|
| 90 |
pdf.set_font("Arial", "B", 14)
|
| 91 |
pdf.cell(200, 10, "Multiple Choice Questions (MCQs)", ln=True)
|
| 92 |
pdf.set_font("Arial", "", 12)
|
|
@@ -123,4 +149,4 @@ iface = gr.Interface(
|
|
| 123 |
title="Voice to Text Converter and Notes Generator",
|
| 124 |
)
|
| 125 |
|
| 126 |
-
iface.launch()
|
|
|
|
| 6 |
import tempfile
|
| 7 |
from nltk.tokenize import sent_tokenize
|
| 8 |
import random
|
| 9 |
+
import re
|
| 10 |
|
| 11 |
# Attempt to download punkt tokenizer
|
| 12 |
try:
|
|
|
|
| 51 |
except LookupError:
|
| 52 |
sentences = custom_sent_tokenize(transcript)
|
| 53 |
|
| 54 |
+
# Extract key sentences for generating questions
|
| 55 |
+
important_sentences = get_important_sentences(sentences)
|
| 56 |
+
|
| 57 |
+
# Generate long questions, short questions, and MCQs
|
| 58 |
+
long_questions = [f"What is meant by '{sentence}'?" for sentence in important_sentences[:5]]
|
| 59 |
+
short_questions = [f"Define '{sentence.split()[0]}'." for sentence in important_sentences[:5]]
|
| 60 |
+
|
| 61 |
+
mcqs = generate_mcqs(important_sentences)
|
| 62 |
+
|
| 63 |
+
pdf_path = create_pdf(transcript, long_questions, short_questions, mcqs)
|
| 64 |
+
return pdf_path
|
| 65 |
|
| 66 |
+
def get_important_sentences(sentences):
|
| 67 |
+
# Prioritize sentences that contain nouns or verbs to be more relevant
|
| 68 |
+
important_sentences = []
|
| 69 |
+
for sentence in sentences:
|
| 70 |
+
# Simple rule: sentences with nouns/verbs are considered important
|
| 71 |
+
if len(re.findall(r'\b(NN|VB)\b', sentence)): # Using POS tags to detect nouns/verbs
|
| 72 |
+
important_sentences.append(sentence)
|
| 73 |
+
return important_sentences[:5] # Limit to top 5 important sentences
|
| 74 |
+
|
| 75 |
+
def generate_mcqs(important_sentences):
|
| 76 |
mcqs = []
|
| 77 |
+
for sentence in important_sentences:
|
| 78 |
+
# Generate MCQs from meaningful sentences
|
| 79 |
+
key_terms = sentence.split() # Split sentence into words (simple tokenization)
|
| 80 |
+
correct_answer = random.choice(key_terms) # Randomly select a key term from the sentence
|
| 81 |
+
options = [correct_answer] + random.sample(key_terms, 3) # Create multiple choice options
|
| 82 |
+
random.shuffle(options) # Shuffle options
|
| 83 |
mcq = {
|
| 84 |
+
"question": f"What is '{correct_answer}' in the context of the sentence?",
|
| 85 |
+
"options": options,
|
| 86 |
+
"answer": correct_answer
|
| 87 |
}
|
| 88 |
mcqs.append(mcq)
|
| 89 |
+
return mcqs
|
|
|
|
|
|
|
| 90 |
|
| 91 |
def create_pdf(transcript, long_questions, short_questions, mcqs):
|
| 92 |
pdf = FPDF()
|
|
|
|
| 98 |
pdf.set_font("Arial", "", 12)
|
| 99 |
pdf.multi_cell(0, 10, f"Transcription:\n{transcript.encode('latin1', 'replace').decode('latin1')}\n\n")
|
| 100 |
|
| 101 |
+
# Add long questions section
|
| 102 |
pdf.set_font("Arial", "B", 14)
|
| 103 |
pdf.cell(200, 10, "Long Questions", ln=True)
|
| 104 |
pdf.set_font("Arial", "", 12)
|
| 105 |
for question in long_questions:
|
| 106 |
pdf.multi_cell(0, 10, f"- {question.encode('latin1', 'replace').decode('latin1')}\n")
|
| 107 |
|
| 108 |
+
# Add short questions section
|
| 109 |
pdf.set_font("Arial", "B", 14)
|
| 110 |
pdf.cell(200, 10, "Short Questions", ln=True)
|
| 111 |
pdf.set_font("Arial", "", 12)
|
| 112 |
for question in short_questions:
|
| 113 |
pdf.multi_cell(0, 10, f"- {question.encode('latin1', 'replace').decode('latin1')}\n")
|
| 114 |
|
| 115 |
+
# Add MCQs section
|
| 116 |
pdf.set_font("Arial", "B", 14)
|
| 117 |
pdf.cell(200, 10, "Multiple Choice Questions (MCQs)", ln=True)
|
| 118 |
pdf.set_font("Arial", "", 12)
|
|
|
|
| 149 |
title="Voice to Text Converter and Notes Generator",
|
| 150 |
)
|
| 151 |
|
| 152 |
+
iface.launch()
|