File size: 4,989 Bytes
d47a89d
 
faf3b9f
 
 
 
 
 
 
 
d47a89d
 
 
 
 
faf3b9f
 
 
 
d47a89d
faf3b9f
 
 
 
 
 
d47a89d
76a09f4
 
 
 
 
faf3b9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d47a89d
76a09f4
 
 
faf3b9f
 
 
76a09f4
 
bea12a5
 
 
faf3b9f
 
76a09f4
bea12a5
 
faf3b9f
 
 
bea12a5
 
faf3b9f
 
 
bea12a5
 
faf3b9f
 
 
bea12a5
 
faf3b9f
 
 
bea12a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff5f533
 
faf3b9f
 
 
 
 
 
 
76a09f4
faf3b9f
ff5f533
 
faf3b9f
 
 
 
ff5f533
d47a89d
faf3b9f
 
76a09f4
6b27525
faf3b9f
ff5f533
c02f435
d47a89d
 
bea12a5
faf3b9f
 
 
bea12a5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import gradio as gr
import cv2
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.datasets import mnist

# Functions for MNIST processing steps
def load_mnist():
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    return x_test, y_test

def get_grayscale(image):
    return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

def thresholding(src):
    return cv2.threshold(src, 127, 255, cv2.THRESH_BINARY)[1]

def gaussian_blur(image):
    return cv2.GaussianBlur(image, (5, 5), 0)

def edge_detection(image):
    return cv2.Canny(image, 100, 200)

def process_mnist_image(img, steps):
    original_img = img.copy()
    step_images = {'Original': original_img}

    for step in steps:
        if step == "Grayscale Conversion":
            img = get_grayscale(img)
        elif step == "Thresholding":
            img = thresholding(img)
        elif step == "Gaussian Blur":
            img = gaussian_blur(img)
        elif step == "Edge Detection":
            img = edge_detection(img)
        
        step_images[step] = img

    return step_images

def visualize_steps(img, steps):
    step_images = process_mnist_image(img, steps)
    
    fig, axes = plt.subplots(1, len(step_images), figsize=(15, 5))
    for ax, (step, img) in zip(axes, step_images.items()):
        ax.imshow(img, cmap='gray')
        ax.set_title(step)
        ax.axis('off')
    
    plt.tight_layout()
    plt.savefig('mnist_processing_steps.png')
    return 'mnist_processing_steps.png'

# Interactive tutorial steps
tutorial_steps = [
    "Grayscale Conversion",
    "Thresholding",
    "Gaussian Blur",
    "Edge Detection"
]

# Interactive questions
questions = [
    {
        "question": "What is the first step in preprocessing MNIST images?",
        "options": ["Gaussian Blur", "Grayscale Conversion", "Edge Detection"],
        "answer": "Grayscale Conversion"
    },
    {
        "question": "What does thresholding do in image preprocessing?",
        "options": ["Detects edges", "Blurs the image", "Binarizes the image"],
        "answer": "Binarizes the image"
    },
    {
        "question": "What library is used to load the MNIST dataset?",
        "options": ["OpenCV", "TensorFlow", "Pytorch"],
        "answer": "TensorFlow"
    },
    {
        "question": "What color space conversion is used in Grayscale Conversion?",
        "options": ["BGR to RGB", "RGB to GRAY", "BGR to GRAY"],
        "answer": "BGR to GRAY"
    },
    {
        "question": "What is the purpose of Gaussian Blur?",
        "options": ["Detect edges", "Reduce noise", "Convert to grayscale"],
        "answer": "Reduce noise"
    }
]

def quiz_interface():
    def check_answer(question_idx, selected):
        if questions[question_idx]["answer"] == selected:
            return "Correct!"
        else:
            return "Incorrect. The correct answer is: " + questions[question_idx]["answer"]

    interfaces = []
    for idx, question in enumerate(questions):
        radio = gr.Radio(choices=question["options"], label=question["question"])
        button = gr.Button("Submit")
        output = gr.Textbox(label="Result")

        def create_submit_fn(idx):
            def submit(selected):
                return check_answer(idx, selected)
            return submit

        interfaces.append(gr.Interface(
            create_submit_fn(idx),
            radio,
            output,
            live=True
        ))

    return interfaces

# Explanation text
explanation_text = """
**Welcome to the MNIST Processing Tutorial!**
This tutorial will guide you through the basic steps of preprocessing images from the MNIST dataset.
**Steps in the MNIST Image Processing:**
1. **Grayscale Conversion:** Converts the image to grayscale to simplify the data.
2. **Thresholding:** Converts the grayscale image into a binary image to distinguish the digits more clearly.
3. **Gaussian Blur:** Applies a blur to reduce noise and detail in the image.
4. **Edge Detection:** Detects the edges of the digits to enhance the features for further processing or recognition tasks.
**Interactive Tutorial:**
Please upload an MNIST image and select the preprocessing steps to visualize their effects.
"""

(x_test, y_test) = load_mnist()
image = gr.Image(shape=(28, 28), image_mode='L')
steps = gr.CheckboxGroup(choices=tutorial_steps, label="Select and order the steps for MNIST processing")
output = gr.Image(type='file', label="Processing Steps Visualization")
explanation = gr.Markdown(explanation_text)

mnist_app = gr.Interface(
    fn=visualize_steps,
    inputs=[image, steps],
    outputs=output,
    title="MNIST Image Processing",
    description=explanation_text,
    css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}"
)

quiz_app = gr.TabbedInterface(
    [mnist_app] + quiz_interface(),
    ["MNIST Tool"] + [f"Question {i+1}" for i in range(len(questions))],
    title="MNIST Tutorial and Quiz"
)

quiz_app.launch()