Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import gradio as gr
|
|
2 |
import cv2
|
3 |
import easyocr
|
4 |
from PIL import Image
|
5 |
-
import numpy as np
|
6 |
|
7 |
# Functions for OCR steps
|
8 |
def get_grayscale(image):
|
@@ -18,25 +17,22 @@ def ocr_with_easy(img):
|
|
18 |
return bounds
|
19 |
|
20 |
def process_image(img, steps):
|
21 |
-
gray_image = None
|
22 |
for step in steps:
|
23 |
if step == "Grayscale Conversion":
|
24 |
img = get_grayscale(img)
|
25 |
-
gray_image = img
|
26 |
elif step == "Thresholding":
|
27 |
img = thresholding(img)
|
28 |
cv2.imwrite('processed_image.png', img)
|
29 |
-
return 'processed_image.png'
|
30 |
|
31 |
def generate_ocr(img, steps):
|
32 |
text_output = ''
|
33 |
-
gray_image = None
|
34 |
if img is not None and (img).any():
|
35 |
-
processed_image_path
|
36 |
text_output = ocr_with_easy(processed_image_path)
|
37 |
else:
|
38 |
raise gr.Error("Please upload an image and select the processing steps!")
|
39 |
-
return text_output
|
40 |
|
41 |
# Interactive tutorial steps
|
42 |
tutorial_steps = [
|
@@ -118,13 +114,12 @@ Please upload an image and select the correct order of steps to perform OCR.
|
|
118 |
image = gr.Image()
|
119 |
steps = gr.CheckboxGroup(choices=tutorial_steps, label="Select and order the steps for OCR")
|
120 |
output = gr.Textbox(label="OCR Output")
|
121 |
-
gray_image_output = gr.Image(label="Grayscale Image", type="numpy")
|
122 |
explanation = gr.Markdown(explanation_text)
|
123 |
|
124 |
ocr_app = gr.Interface(
|
125 |
fn=generate_ocr,
|
126 |
inputs=[image, steps],
|
127 |
-
outputs=
|
128 |
title="Optical Character Recognition",
|
129 |
description=explanation_text,
|
130 |
css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}"
|
|
|
2 |
import cv2
|
3 |
import easyocr
|
4 |
from PIL import Image
|
|
|
5 |
|
6 |
# Functions for OCR steps
|
7 |
def get_grayscale(image):
|
|
|
17 |
return bounds
|
18 |
|
19 |
def process_image(img, steps):
|
|
|
20 |
for step in steps:
|
21 |
if step == "Grayscale Conversion":
|
22 |
img = get_grayscale(img)
|
|
|
23 |
elif step == "Thresholding":
|
24 |
img = thresholding(img)
|
25 |
cv2.imwrite('processed_image.png', img)
|
26 |
+
return 'processed_image.png'
|
27 |
|
28 |
def generate_ocr(img, steps):
|
29 |
text_output = ''
|
|
|
30 |
if img is not None and (img).any():
|
31 |
+
processed_image_path = process_image(img, steps)
|
32 |
text_output = ocr_with_easy(processed_image_path)
|
33 |
else:
|
34 |
raise gr.Error("Please upload an image and select the processing steps!")
|
35 |
+
return text_output
|
36 |
|
37 |
# Interactive tutorial steps
|
38 |
tutorial_steps = [
|
|
|
114 |
image = gr.Image()
|
115 |
steps = gr.CheckboxGroup(choices=tutorial_steps, label="Select and order the steps for OCR")
|
116 |
output = gr.Textbox(label="OCR Output")
|
|
|
117 |
explanation = gr.Markdown(explanation_text)
|
118 |
|
119 |
ocr_app = gr.Interface(
|
120 |
fn=generate_ocr,
|
121 |
inputs=[image, steps],
|
122 |
+
outputs=output,
|
123 |
title="Optical Character Recognition",
|
124 |
description=explanation_text,
|
125 |
css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}"
|