Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,71 +1,91 @@
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
-
import
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
# Functions for OCR steps
|
7 |
def get_grayscale(image):
|
8 |
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
9 |
|
10 |
def thresholding(src):
|
11 |
-
return cv2.threshold(src, 127, 255, cv2.
|
|
|
|
|
|
|
12 |
|
13 |
-
def
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
18 |
|
19 |
-
def process_image(img, steps):
|
20 |
for step in steps:
|
21 |
if step == "Grayscale Conversion":
|
22 |
img = get_grayscale(img)
|
23 |
elif step == "Thresholding":
|
24 |
img = thresholding(img)
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
# Interactive tutorial steps
|
38 |
tutorial_steps = [
|
39 |
"Grayscale Conversion",
|
40 |
-
"Thresholding"
|
|
|
|
|
41 |
]
|
42 |
|
43 |
# Interactive questions
|
44 |
questions = [
|
45 |
{
|
46 |
-
"question": "What is the first step in
|
47 |
-
"options": ["
|
48 |
"answer": "Grayscale Conversion"
|
49 |
},
|
50 |
{
|
51 |
-
"question": "What
|
52 |
-
"options": ["
|
53 |
-
"answer": "
|
54 |
},
|
55 |
{
|
56 |
-
"question": "
|
57 |
-
"options": ["
|
58 |
-
"answer": "
|
59 |
},
|
60 |
{
|
61 |
-
"question": "What
|
62 |
-
"options": ["
|
63 |
-
"answer": "
|
64 |
},
|
65 |
{
|
66 |
-
"question": "What
|
67 |
-
"options": ["
|
68 |
-
"answer": "
|
69 |
}
|
70 |
]
|
71 |
|
@@ -98,38 +118,36 @@ def quiz_interface():
|
|
98 |
|
99 |
# Explanation text
|
100 |
explanation_text = """
|
101 |
-
**Welcome to the
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
**
|
106 |
-
|
107 |
-
|
108 |
-
3. **OCR using EasyOCR:** We use the EasyOCR library to recognize and extract text from the preprocessed image.
|
109 |
-
|
110 |
**Interactive Tutorial:**
|
111 |
-
Please upload an image and select the
|
112 |
"""
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
117 |
explanation = gr.Markdown(explanation_text)
|
118 |
|
119 |
-
|
120 |
-
fn=
|
121 |
inputs=[image, steps],
|
122 |
outputs=output,
|
123 |
-
title="
|
124 |
description=explanation_text,
|
125 |
css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}"
|
126 |
)
|
127 |
|
128 |
quiz_app = gr.TabbedInterface(
|
129 |
-
[
|
130 |
-
["
|
131 |
-
title="
|
132 |
)
|
133 |
|
134 |
quiz_app.launch()
|
135 |
-
|
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from tensorflow.keras.datasets import mnist
|
6 |
+
|
7 |
+
# Functions for MNIST processing steps
|
8 |
+
def load_mnist():
|
9 |
+
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
10 |
+
return x_test, y_test
|
11 |
|
|
|
12 |
def get_grayscale(image):
|
13 |
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
14 |
|
15 |
def thresholding(src):
|
16 |
+
return cv2.threshold(src, 127, 255, cv2.THRESH_BINARY)[1]
|
17 |
+
|
18 |
+
def gaussian_blur(image):
|
19 |
+
return cv2.GaussianBlur(image, (5, 5), 0)
|
20 |
|
21 |
+
def edge_detection(image):
|
22 |
+
return cv2.Canny(image, 100, 200)
|
23 |
+
|
24 |
+
def process_mnist_image(img, steps):
|
25 |
+
original_img = img.copy()
|
26 |
+
step_images = {'Original': original_img}
|
27 |
|
|
|
28 |
for step in steps:
|
29 |
if step == "Grayscale Conversion":
|
30 |
img = get_grayscale(img)
|
31 |
elif step == "Thresholding":
|
32 |
img = thresholding(img)
|
33 |
+
elif step == "Gaussian Blur":
|
34 |
+
img = gaussian_blur(img)
|
35 |
+
elif step == "Edge Detection":
|
36 |
+
img = edge_detection(img)
|
37 |
+
|
38 |
+
step_images[step] = img
|
39 |
+
|
40 |
+
return step_images
|
41 |
+
|
42 |
+
def visualize_steps(img, steps):
|
43 |
+
step_images = process_mnist_image(img, steps)
|
44 |
+
|
45 |
+
fig, axes = plt.subplots(1, len(step_images), figsize=(15, 5))
|
46 |
+
for ax, (step, img) in zip(axes, step_images.items()):
|
47 |
+
ax.imshow(img, cmap='gray')
|
48 |
+
ax.set_title(step)
|
49 |
+
ax.axis('off')
|
50 |
+
|
51 |
+
plt.tight_layout()
|
52 |
+
plt.savefig('mnist_processing_steps.png')
|
53 |
+
return 'mnist_processing_steps.png'
|
54 |
|
55 |
# Interactive tutorial steps
|
56 |
tutorial_steps = [
|
57 |
"Grayscale Conversion",
|
58 |
+
"Thresholding",
|
59 |
+
"Gaussian Blur",
|
60 |
+
"Edge Detection"
|
61 |
]
|
62 |
|
63 |
# Interactive questions
|
64 |
questions = [
|
65 |
{
|
66 |
+
"question": "What is the first step in preprocessing MNIST images?",
|
67 |
+
"options": ["Gaussian Blur", "Grayscale Conversion", "Edge Detection"],
|
68 |
"answer": "Grayscale Conversion"
|
69 |
},
|
70 |
{
|
71 |
+
"question": "What does thresholding do in image preprocessing?",
|
72 |
+
"options": ["Detects edges", "Blurs the image", "Binarizes the image"],
|
73 |
+
"answer": "Binarizes the image"
|
74 |
},
|
75 |
{
|
76 |
+
"question": "What library is used to load the MNIST dataset?",
|
77 |
+
"options": ["OpenCV", "TensorFlow", "Pytorch"],
|
78 |
+
"answer": "TensorFlow"
|
79 |
},
|
80 |
{
|
81 |
+
"question": "What color space conversion is used in Grayscale Conversion?",
|
82 |
+
"options": ["BGR to RGB", "RGB to GRAY", "BGR to GRAY"],
|
83 |
+
"answer": "BGR to GRAY"
|
84 |
},
|
85 |
{
|
86 |
+
"question": "What is the purpose of Gaussian Blur?",
|
87 |
+
"options": ["Detect edges", "Reduce noise", "Convert to grayscale"],
|
88 |
+
"answer": "Reduce noise"
|
89 |
}
|
90 |
]
|
91 |
|
|
|
118 |
|
119 |
# Explanation text
|
120 |
explanation_text = """
|
121 |
+
**Welcome to the MNIST Processing Tutorial!**
|
122 |
+
This tutorial will guide you through the basic steps of preprocessing images from the MNIST dataset.
|
123 |
+
**Steps in the MNIST Image Processing:**
|
124 |
+
1. **Grayscale Conversion:** Converts the image to grayscale to simplify the data.
|
125 |
+
2. **Thresholding:** Converts the grayscale image into a binary image to distinguish the digits more clearly.
|
126 |
+
3. **Gaussian Blur:** Applies a blur to reduce noise and detail in the image.
|
127 |
+
4. **Edge Detection:** Detects the edges of the digits to enhance the features for further processing or recognition tasks.
|
|
|
|
|
128 |
**Interactive Tutorial:**
|
129 |
+
Please upload an MNIST image and select the preprocessing steps to visualize their effects.
|
130 |
"""
|
131 |
|
132 |
+
(x_test, y_test) = load_mnist()
|
133 |
+
image = gr.Image(shape=(28, 28), image_mode='L')
|
134 |
+
steps = gr.CheckboxGroup(choices=tutorial_steps, label="Select and order the steps for MNIST processing")
|
135 |
+
output = gr.Image(type='file', label="Processing Steps Visualization")
|
136 |
explanation = gr.Markdown(explanation_text)
|
137 |
|
138 |
+
mnist_app = gr.Interface(
|
139 |
+
fn=visualize_steps,
|
140 |
inputs=[image, steps],
|
141 |
outputs=output,
|
142 |
+
title="MNIST Image Processing",
|
143 |
description=explanation_text,
|
144 |
css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}"
|
145 |
)
|
146 |
|
147 |
quiz_app = gr.TabbedInterface(
|
148 |
+
[mnist_app] + quiz_interface(),
|
149 |
+
["MNIST Tool"] + [f"Question {i+1}" for i in range(len(questions))],
|
150 |
+
title="MNIST Tutorial and Quiz"
|
151 |
)
|
152 |
|
153 |
quiz_app.launch()
|
|