File size: 2,912 Bytes
d347764
 
 
 
 
7f18a5d
f2eb61e
 
9e55989
d347764
fd6ca3f
 
d347764
 
fd6ca3f
 
 
 
 
d347764
9e55989
 
d347764
 
 
fd6ca3f
 
 
 
 
 
d347764
 
 
9e55989
 
f2eb61e
d347764
 
 
 
 
 
fd6ca3f
d347764
 
f805e49
 
b5787bb
f2eb61e
f805e49
 
 
 
c737803
 
 
d347764
96018e7
d347764
f805e49
 
d347764
c737803
 
 
96018e7
c737803
 
 
 
 
 
 
3946ba6
c737803
d347764
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset

from transformers import pipeline
from transformers import BarkModel, BarkProcessor

from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration

SAMPLE_RATE = 16000

device = "cuda:0" if torch.cuda.is_available() else "cpu"

# asr_model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-medium-mustc-multilingual-st")
# asr_processor = Speech2TextProcessor.from_pretrained("facebook/s2t-medium-mustc-multilingual-st")

asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)


bark_model = BarkModel.from_pretrained("suno/bark")
bark_processor = BarkProcessor.from_pretrained("suno/bark")


def translate(audio):
    # inputs = asr_processor(audio, sampling_rate=16000, return_tensors="pt")
    # generated_ids = asr_model.generate(inputs["input_features"],attention_mask=inputs["attention_mask"],
    # forced_bos_token_id=asr_processor.tokenizer.lang_code_to_id["it"],)
    # translation = asr_processor.batch_decode(generated_ids, skip_special_tokens=True)
    translation = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe",  "language": "it"})
    return translation["text"]


def synthesise(text):
    inputs = bark_processor(text=text, voice_preset="v2/it_speaker_4",return_tensors="pt")
    speech = bark_model.generate(**inputs, do_sample=True)
    return speech


def speech_to_speech_translation(audio):
    translated_text = translate(audio)
    synthesised_speech = synthesise(translated_text)
    synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
    return SAMPLE_RATE, synthesised_speech


title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Italian. Demo uses Meta's [Speech2Text](https://huggingface.co/facebook/s2t-medium-mustc-multilingual-st) model for speech translation, and Suno's
[Bark](https://huggingface.co/suno/bark) model for text-to-speech:

![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""

demo = gr.Blocks()

mic_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="microphone", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    title=title,
    description=description,
)

file_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="upload", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    examples=[["./example.wav"]],
    title=title,
    description=description,
)

with demo:
    gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])

demo.launch()