leofltt commited on
Commit
f2eb61e
·
verified ·
1 Parent(s): 01b094a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -8
app.py CHANGED
@@ -4,6 +4,8 @@ import torch
4
  from datasets import load_dataset
5
 
6
  from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
 
 
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
@@ -12,10 +14,13 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
 
 
 
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
@@ -27,9 +32,9 @@ def translate(audio):
27
 
28
 
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
- return speech.cpu()
33
 
34
 
35
  def speech_to_speech_translation(audio):
@@ -41,8 +46,8 @@ def speech_to_speech_translation(audio):
41
 
42
  title = "Cascaded STST"
43
  description = """
44
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Italian. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
- [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
 
47
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
48
  """
 
4
  from datasets import load_dataset
5
 
6
  from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
+ from transformers import BarkModel, BarkProcessor
8
+
9
 
10
 
11
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
 
14
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
15
 
16
  # load text-to-speech checkpoint and speaker embeddings
17
+ # processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
18
+
19
+ barkmodel = BarkModel.from_pretrained("suno/bark")
20
+ barkprocessor = BarkProcessor.from_pretrained("suno/bark")
21
 
22
+ # model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
23
+ # vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
24
 
25
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
26
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
 
32
 
33
 
34
  def synthesise(text):
35
+ inputs = barkprocessor(text=[text], voice_preset="v2/it_speaker_4",return_tensors="pt")
36
+ speech = barkmodel.generate(**inputs, do_sample=True)
37
+ return speech
38
 
39
 
40
  def speech_to_speech_translation(audio):
 
46
 
47
  title = "Cascaded STST"
48
  description = """
49
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Italian. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Suno's
50
+ [Bark](https://huggingface.co/suno/bark) model for text-to-speech:
51
 
52
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
53
  """