Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,8 @@ import torch
|
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
|
|
|
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
@@ -12,10 +14,13 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
-
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
|
|
|
|
|
|
16 |
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
18 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
|
20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
@@ -27,9 +32,9 @@ def translate(audio):
|
|
27 |
|
28 |
|
29 |
def synthesise(text):
|
30 |
-
inputs =
|
31 |
-
speech =
|
32 |
-
return speech
|
33 |
|
34 |
|
35 |
def speech_to_speech_translation(audio):
|
@@ -41,8 +46,8 @@ def speech_to_speech_translation(audio):
|
|
41 |
|
42 |
title = "Cascaded STST"
|
43 |
description = """
|
44 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Italian. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and
|
45 |
-
[
|
46 |
|
47 |

|
48 |
"""
|
|
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
+
from transformers import BarkModel, BarkProcessor
|
8 |
+
|
9 |
|
10 |
|
11 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
14 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
15 |
|
16 |
# load text-to-speech checkpoint and speaker embeddings
|
17 |
+
# processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
18 |
+
|
19 |
+
barkmodel = BarkModel.from_pretrained("suno/bark")
|
20 |
+
barkprocessor = BarkProcessor.from_pretrained("suno/bark")
|
21 |
|
22 |
+
# model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
23 |
+
# vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
24 |
|
25 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
26 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
|
|
32 |
|
33 |
|
34 |
def synthesise(text):
|
35 |
+
inputs = barkprocessor(text=[text], voice_preset="v2/it_speaker_4",return_tensors="pt")
|
36 |
+
speech = barkmodel.generate(**inputs, do_sample=True)
|
37 |
+
return speech
|
38 |
|
39 |
|
40 |
def speech_to_speech_translation(audio):
|
|
|
46 |
|
47 |
title = "Cascaded STST"
|
48 |
description = """
|
49 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Italian. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Suno's
|
50 |
+
[Bark](https://huggingface.co/suno/bark) model for text-to-speech:
|
51 |
|
52 |

|
53 |
"""
|