leofltt commited on
Commit
7f18a5d
·
verified ·
1 Parent(s): f2eb61e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -10
app.py CHANGED
@@ -3,7 +3,7 @@ import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
  from transformers import BarkModel, BarkProcessor
8
 
9
 
@@ -13,18 +13,9 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
13
  # load speech translation checkpoint
14
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
15
 
16
- # load text-to-speech checkpoint and speaker embeddings
17
- # processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
18
-
19
  barkmodel = BarkModel.from_pretrained("suno/bark")
20
  barkprocessor = BarkProcessor.from_pretrained("suno/bark")
21
 
22
- # model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
23
- # vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
24
-
25
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
26
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
27
-
28
 
29
  def translate(audio):
30
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "it"})
 
3
  import torch
4
  from datasets import load_dataset
5
 
6
+ from transformers import pipeline
7
  from transformers import BarkModel, BarkProcessor
8
 
9
 
 
13
  # load speech translation checkpoint
14
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
15
 
 
 
 
16
  barkmodel = BarkModel.from_pretrained("suno/bark")
17
  barkprocessor = BarkProcessor.from_pretrained("suno/bark")
18
 
 
 
 
 
 
 
19
 
20
  def translate(audio):
21
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "it"})