Spaces:
Build error
Build error
File size: 14,349 Bytes
ba6c035 f85ab70 10e9b7d ba6c035 10e9b7d eccf8e4 3c4371f 830c198 ba6c035 cc70c39 ba6c035 85d8289 e80aab9 3db6293 ba6c035 ec8845c ba6c035 2ac3a83 ba6c035 2ac3a83 ba6c035 cc70c39 ba6c035 cc70c39 ba6c035 cc70c39 ba6c035 2ac3a83 ba6c035 95afeec ba6c035 2ac3a83 ba6c035 2ac3a83 ba6c035 2ac3a83 ba6c035 4021bf3 b795696 cc70c39 ba6c035 2ac3a83 7d65c66 2ac3a83 830c198 cc70c39 2ac3a83 cc70c39 2ac3a83 364f05f cc70c39 7e4a06b 31243f4 cc70c39 31243f4 ba6c035 31243f4 ba6c035 f85ab70 cc70c39 36ed51a cc70c39 830c198 eccf8e4 2ac3a83 7d65c66 31243f4 2ac3a83 cc70c39 f85ab70 85d8289 cc70c39 7d65c66 cc70c39 31243f4 cc70c39 31243f4 7d65c66 b795696 ec8845c b795696 ec8845c b795696 31243f4 ba6c035 b795696 ba6c035 b795696 cc70c39 31243f4 cc70c39 b795696 cc70c39 e80aab9 2ac3a83 e80aab9 31243f4 cc70c39 e80aab9 3c4371f ba6c035 e80aab9 85d8289 ba6c035 7d65c66 85d8289 e80aab9 ba6c035 7e4a06b 31243f4 b795696 7d65c66 ba6c035 e80aab9 830c198 f85ab70 830c198 ba6c035 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
# app.py (Final Version)
import os
import re
import gradio as gr
import requests
import pandas as pd
import logging
import numexpr
from typing import TypedDict, Annotated
# --- Langchain & HF Imports ---
from langchain_huggingface import HuggingFaceEndpoint
from langchain_community.tools import DuckDuckGoSearchRun
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.tools import tool
from langgraph.graph import StateGraph, END
from langchain_community.document_loaders.youtube import YoutubeLoader
from transformers.pipelines import pipeline as hf_pipeline # Renamed to avoid conflict
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
SYSTEM_PROMPT = """You are a helpful and expert assistant named GAIA, designed to answer questions accurately. To do this, you have access to a set of tools. Based on the user's question, you must decide which tool to use, if any. Your process is:
1. **Analyze the Question**: Understand what is being asked.
2. **Select a Tool**: If necessary, choose the best tool. Your available tools are: `web_search`, `math_calculator`, `image_analyzer`, `youtube_transcript_reader`.
3. **Call the Tool**: Output a tool call in the format `tool_name("argument")`. For example: `web_search("what is the weather in Paris?")`.
4. **Analyze the Result**: Look at the tool's output.
5. **Final Answer**: If you have enough information, provide the final answer. If not, you can use another tool.
When you have the final answer, you **must** output it in the following format, and nothing else:
FINAL ANSWER: [YOUR FINAL ANSWER]"""
# --- Tool Definitions ---
image_to_text_pipeline = None
@tool
def web_search(query: str) -> str:
"""Searches the web using DuckDuckGo for up-to-date information."""
logging.info(f"--- Calling Web Search Tool with query: {query} ---")
search = DuckDuckGoSearchRun()
return search.run(query)
@tool
def math_calculator(expression: str) -> str:
"""Calculates the result of a mathematical expression."""
logging.info(f"--- Calling Math Calculator Tool with expression: {expression} ---")
try:
if not re.match(r"^[0-9\.\+\-\*\/\(\)\s]+$", expression):
return "Error: Invalid characters in expression."
result = numexpr.evaluate(expression).item()
return str(result)
except Exception as e:
logging.error(f"Calculator error: {e}")
return f"Error: {e}"
@tool
def image_analyzer(image_url: str) -> str:
"""Analyzes an image from a URL and returns a text description."""
global image_to_text_pipeline
logging.info(f"--- Calling Image Analyzer Tool with URL: {image_url} ---")
try:
if image_to_text_pipeline is None:
logging.info(
"--- Initializing Image Analyzer pipeline (lazy loading)... ---"
)
image_to_text_pipeline = hf_pipeline(
"image-to-text", model="Salesforce/blip-image-captioning-base"
)
logging.info("--- Image Analyzer pipeline initialized. ---")
pipeline_output = image_to_text_pipeline(image_url)
if (
pipeline_output
and isinstance(pipeline_output, list)
and len(pipeline_output) > 0
):
description = pipeline_output[0].get(
"generated_text", "Error: Could not generate text."
)
else:
description = "Error: Could not analyze image."
return description
except Exception as e:
logging.error(f"Error analyzing image: {e}")
return f"Error analyzing image: {e}"
@tool
def youtube_transcript_reader(youtube_url: str) -> str:
"""Reads the transcript of a YouTube video from its URL."""
logging.info(
f"--- Calling YouTube Transcript Reader Tool with URL: {youtube_url} ---"
)
try:
loader = YoutubeLoader.from_youtube_url(youtube_url, add_video_info=False)
docs = loader.load()
transcript = " ".join([doc.page_content for doc in docs])
return transcript[:4000]
except Exception as e:
logging.error(f"Error reading YouTube transcript: {e}")
return f"Error: {e}"
class AgentState(TypedDict):
question: str
messages: Annotated[list, lambda x, y: x + y]
sender: str
class GaiaAgent:
def __init__(self):
logging.info("Initializing GaiaAgent...")
self.tools = [
web_search,
math_calculator,
image_analyzer,
youtube_transcript_reader,
]
# --- THIS IS THE CORRECTED LLM INITIALIZATION ---
logging.info("Initializing LLM via modern HuggingFaceEndpoint...")
llm = HuggingFaceEndpoint(
repo_id="HuggingFaceH4/zephyr-7b-beta",
temperature=0.1,
max_new_tokens=1024,
huggingfacehub_api_token=os.getenv("HUGGINGFACEHUB_API_TOKEN"),
)
logging.info("LLM initialized successfully.")
# The rest of the class remains the same
prompt = PromptTemplate(
template=SYSTEM_PROMPT
+ "\nHere is the current conversation:\n{messages}\n\nQuestion: {question}",
input_variables=["messages", "question"],
)
self.agent = prompt | llm | StrOutputParser()
self.graph = self._create_graph()
logging.info("GaiaAgent initialized successfully.")
def _create_graph(self):
graph = StateGraph(AgentState)
graph.add_node("agent", self._call_agent)
graph.add_node("tools", self._call_tools)
graph.add_conditional_edges(
"agent", self._decide_action, {END: END, "tools": "tools"}
)
graph.add_edge("tools", "agent")
graph.set_entry_point("agent")
return graph.compile()
def _call_agent(self, state: AgentState):
logging.info("--- Calling Agent ---")
message_history = "\n".join(state["messages"])
response = self.agent.invoke(
{"messages": message_history, "question": state["question"]}
)
return {"messages": [response], "sender": "agent"}
def _decide_action(self, state: AgentState):
logging.info("--- Deciding Action ---")
response = state["messages"][-1]
if "FINAL ANSWER:" in response:
return END
else:
return "tools"
def _call_tools(self, state: AgentState):
logging.info("--- Calling Tools ---")
raw_tool_call = state["messages"][-1]
tool_call_match = re.search(r"(\w+)\s*\((.*?)\)", raw_tool_call, re.DOTALL)
if not tool_call_match:
logging.warning("No valid tool call found in agent response.")
return {
"messages": [
'No valid tool call found. Please format your response as `tool_name("argument")` or provide a `FINAL ANSWER:`.'
],
"sender": "tools",
}
tool_name = tool_call_match.group(1).strip()
tool_input_str = tool_call_match.group(2).strip()
if (tool_input_str.startswith('"') and tool_input_str.endswith('"')) or (
tool_input_str.startswith("'") and tool_input_str.endswith("'")
):
tool_input = tool_input_str[1:-1]
else:
tool_input = tool_input_str
tool_to_call = next((t for t in self.tools if t.name == tool_name), None)
if tool_to_call:
try:
result = tool_to_call.run(tool_input)
return {"messages": [str(result)], "sender": "tools"}
except Exception as e:
logging.error(f"Error executing tool {tool_name}: {e}")
return {
"messages": [f"Error executing tool {tool_name}: {e}"],
"sender": "tools",
}
else:
logging.warning(f"Tool '{tool_name}' not found.")
return {"messages": [f"Tool '{tool_name}' not found."], "sender": "tools"}
def __call__(self, question: str) -> str:
logging.info(f"Agent received question: {question[:100]}...")
try:
initial_state = {"question": question, "messages": [], "sender": "user"}
final_state = self.graph.invoke(initial_state, {"recursion_limit": 15})
final_response = final_state["messages"][-1]
match = re.search(
r"FINAL ANSWER:\s*(.*)", final_response, re.IGNORECASE | re.DOTALL
)
if match:
extracted_answer = match.group(1).strip()
logging.info(f"Agent returning final answer: {extracted_answer}")
return extracted_answer
else:
logging.warning(
"Agent could not find a final answer. Returning the last message."
)
return final_response
except Exception as e:
logging.error(f"Error during agent invocation: {e}", exc_info=True)
return f"Error during agent invocation: {e}"
# In app.py
# ... (keep all the code above this function)
def run_and_submit_all(profile: gr.OAuthProfile | None):
if not profile:
return "Please Login to Hugging Face with the button.", None
username = profile.username
logging.info(f"User logged in: {username}")
space_id = os.getenv("SPACE_ID")
if not space_id:
space_id = "leofltt/HF_Agents_Final_Assignment"
logging.warning(f"SPACE_ID not found, using fallback for local run: {space_id}")
if not space_id:
return "CRITICAL ERROR: SPACE_ID environment variable is not set.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = GaiaAgent()
except Exception as e:
logging.critical(f"Fatal error instantiating agent: {e}", exc_info=True)
return f"Fatal error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
logging.info(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=20)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty.", None
logging.info(f"Successfully fetched {len(questions_data)} questions.")
except Exception as e:
return f"Error fetching questions: {e}", None
# --- MODIFICATION FOR DEBUGGING ---
# We will only process the first question from the list.
questions_to_process = [questions_data[0]]
logging.info(
f"DEBUG MODE: Processing only the first question out of {len(questions_data)}."
)
# --- END OF MODIFICATION ---
results_log = []
answers_payload = []
# The loop now runs only once.
for i, item in enumerate(questions_to_process):
task_id = item.get("task_id")
question_text = item.get("question")
logging.info(f"--- Processing question (Task ID: {task_id}) ---")
if not task_id or question_text is None:
continue
try:
submitted_answer = agent(question_text)
answers_payload.append(
{"task_id": task_id, "submitted_answer": submitted_answer}
)
results_log.append(
{
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer,
}
)
except Exception as e:
logging.error(f"Error running agent on task {task_id}: {e}", exc_info=True)
results_log.append(
{
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}",
}
)
# Also return the error in the status for immediate feedback
return f"Agent failed on the first question with error: {e}", pd.DataFrame(
results_log
)
if not answers_payload:
return "Agent did not produce an answer for the first question.", pd.DataFrame(
results_log
)
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload,
}
logging.info(f"Submitting {len(answers_payload)} answer for user '{username}'...")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful (for one question)!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
return final_status, pd.DataFrame(results_log)
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}. Detail: {e.response.text}"
return f"Submission Failed: {error_detail}", pd.DataFrame(results_log)
except Exception as e:
return f"An unexpected error occurred during submission: {e}", pd.DataFrame(
results_log
)
with gr.Blocks() as demo:
gr.Markdown("# GAIA Agent Evaluation Runner")
gr.Markdown(
"This agent uses LangGraph and Mistral-7B to answer questions from the GAIA benchmark."
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(
label="Run Status / Submission Result", lines=5, interactive=False
)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logging.info("App Starting (Final Version)...")
demo.launch()
|