Spaces:
Build error
Build error
initial impl
Browse files- app.py +94 -4
- requirements.txt +9 -1
app.py
CHANGED
@@ -3,6 +3,13 @@ import gradio as gr
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
@@ -13,11 +20,94 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
13 |
class BasicAgent:
|
14 |
def __init__(self):
|
15 |
print("BasicAgent initialized.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def __call__(self, question: str) -> str:
|
17 |
-
print(f"Agent received question
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
23 |
"""
|
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
+
from llama_index import VectorStoreIndex, SimpleDirectoryReader, Document
|
7 |
+
from llama_index.llms import HuggingFaceLLM
|
8 |
+
from llama_index import ServiceContext
|
9 |
+
from llama_index.embeddings import HuggingFaceEmbedding
|
10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
11 |
+
import torch
|
12 |
+
from dotenv import load_dotenv
|
13 |
|
14 |
# (Keep Constants as is)
|
15 |
# --- Constants ---
|
|
|
20 |
class BasicAgent:
|
21 |
def __init__(self):
|
22 |
print("BasicAgent initialized.")
|
23 |
+
load_dotenv()
|
24 |
+
|
25 |
+
# Initialize model and tokenizer
|
26 |
+
model_name = "open-r1/OlympicCoder-7B"
|
27 |
+
|
28 |
+
# Configure quantization
|
29 |
+
quantization_config = BitsAndBytesConfig(
|
30 |
+
load_in_4bit=True,
|
31 |
+
bnb_4bit_compute_dtype=torch.float16,
|
32 |
+
bnb_4bit_quant_type="nf4",
|
33 |
+
bnb_4bit_use_double_quant=True,
|
34 |
+
)
|
35 |
+
|
36 |
+
# Initialize tokenizer and model
|
37 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
38 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
39 |
+
model_name,
|
40 |
+
device_map="auto",
|
41 |
+
quantization_config=quantization_config,
|
42 |
+
trust_remote_code=True
|
43 |
+
)
|
44 |
+
|
45 |
+
# Create HuggingFaceLLM instance
|
46 |
+
self.llm = HuggingFaceLLM(
|
47 |
+
context_window=4096,
|
48 |
+
max_new_tokens=512,
|
49 |
+
tokenizer=self.tokenizer,
|
50 |
+
model=self.model,
|
51 |
+
model_name=model_name,
|
52 |
+
device_map="auto",
|
53 |
+
temperature=0.1
|
54 |
+
)
|
55 |
+
|
56 |
+
print("Agent initialized.")
|
57 |
+
|
58 |
def __call__(self, question: str) -> str:
|
59 |
+
print(f"Agent received question: {question[:50]}...")
|
60 |
+
|
61 |
+
try:
|
62 |
+
# Extract data from the question if present
|
63 |
+
data_start = question.find('```python')
|
64 |
+
if data_start != -1:
|
65 |
+
data_end = question.find('```', data_start + 8)
|
66 |
+
data_code = question[data_start + 8:data_end].strip()
|
67 |
+
|
68 |
+
# Execute the data code in a safe context to create DataFrame
|
69 |
+
local_vars = {}
|
70 |
+
exec(data_code, {"pd": pd}, local_vars)
|
71 |
+
df = local_vars.get('df')
|
72 |
+
|
73 |
+
# Extract the actual question (usually after the code block)
|
74 |
+
actual_question = question[data_end + 3:].strip()
|
75 |
+
|
76 |
+
# Create analysis prompt
|
77 |
+
prompt = f"""
|
78 |
+
You are a data analysis expert. Given the following DataFrame and question,
|
79 |
+
provide the correct answer using pandas operations.
|
80 |
+
|
81 |
+
DataFrame head:
|
82 |
+
{df.head().to_string()}
|
83 |
+
|
84 |
+
DataFrame info:
|
85 |
+
{df.info()}
|
86 |
+
|
87 |
+
Question: {actual_question}
|
88 |
+
|
89 |
+
Provide only the final answer without explanations.
|
90 |
+
"""
|
91 |
+
|
92 |
+
else:
|
93 |
+
# Handle non-data questions
|
94 |
+
prompt = f"""
|
95 |
+
You are a helpful AI assistant specializing in data analysis.
|
96 |
+
Please provide a clear, concise answer to this question:
|
97 |
+
{question}
|
98 |
+
"""
|
99 |
+
|
100 |
+
# Use LlamaIndex query engine
|
101 |
+
query_engine = self.index.as_query_engine()
|
102 |
+
response = query_engine.query(prompt)
|
103 |
+
answer = str(response)
|
104 |
+
|
105 |
+
print(f"Agent generated answer: {answer[:100]}...")
|
106 |
+
return answer
|
107 |
+
|
108 |
+
except Exception as e:
|
109 |
+
print(f"Error generating answer: {e}")
|
110 |
+
return f"I apologize, I encountered an error: {str(e)}"
|
111 |
|
112 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
113 |
"""
|
requirements.txt
CHANGED
@@ -1,2 +1,10 @@
|
|
1 |
gradio
|
2 |
-
requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
gradio
|
2 |
+
requests
|
3 |
+
llama-index
|
4 |
+
transformers
|
5 |
+
python-dotenv
|
6 |
+
torch
|
7 |
+
sentence-transformers
|
8 |
+
nltk
|
9 |
+
accelerate
|
10 |
+
bitsandbytes
|