Spaces:
Build error
Build error
new day new attempt
Browse files
app.py
CHANGED
@@ -1,38 +1,44 @@
|
|
|
|
|
|
1 |
import os
|
2 |
import re
|
3 |
import gradio as gr
|
4 |
import requests
|
5 |
import pandas as pd
|
6 |
-
import torch
|
7 |
import logging
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
9 |
from langchain_community.tools import DuckDuckGoSearchRun
|
10 |
-
from langchain_core.prompts import
|
11 |
-
from langchain.prompts import PromptTemplate
|
12 |
-
from langchain_huggingface import HuggingFacePipeline
|
13 |
from langchain_core.output_parsers import StrOutputParser
|
14 |
from langchain_core.tools import tool
|
15 |
from langgraph.graph import StateGraph, END
|
16 |
-
from typing import TypedDict, Annotated, List
|
17 |
from langchain_community.document_loaders.youtube import YoutubeLoader
|
18 |
-
|
19 |
|
20 |
# --- Constants ---
|
21 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
30 |
FINAL ANSWER: [YOUR FINAL ANSWER]
|
31 |
|
32 |
-
YOUR FINAL ANSWER should be a number
|
33 |
-
-
|
34 |
-
-
|
35 |
-
- If you are asked for a comma-separated list, apply the above rules to each element.
|
36 |
|
37 |
Example:
|
38 |
Question: What is the capital of France?
|
@@ -44,48 +50,51 @@ Your final answer: FINAL ANSWER: Paris
|
|
44 |
|
45 |
# --- Tool Definitions ---
|
46 |
|
47 |
-
# Global variable
|
48 |
image_to_text_pipeline = None
|
49 |
|
50 |
|
51 |
@tool
|
52 |
-
def web_search(query: str):
|
53 |
-
"""Searches the web using DuckDuckGo."""
|
54 |
logging.info(f"--- Calling Web Search Tool with query: {query} ---")
|
55 |
search = DuckDuckGoSearchRun()
|
56 |
return search.run(query)
|
57 |
|
58 |
|
59 |
@tool
|
60 |
-
def math_calculator(expression: str):
|
61 |
-
"""Calculates the result of a mathematical expression."""
|
62 |
logging.info(f"--- Calling Math Calculator Tool with expression: {expression} ---")
|
63 |
try:
|
64 |
-
#
|
|
|
|
|
65 |
result = numexpr.evaluate(expression).item()
|
66 |
-
return result
|
67 |
except Exception as e:
|
68 |
-
logging.error(f"
|
69 |
-
return f"Error
|
70 |
|
71 |
|
72 |
@tool
|
73 |
-
def image_analyzer(image_url: str):
|
74 |
-
"""Analyzes an image
|
75 |
global image_to_text_pipeline
|
76 |
logging.info(f"--- Calling Image Analyzer Tool with URL: {image_url} ---")
|
77 |
try:
|
78 |
if image_to_text_pipeline is None:
|
79 |
logging.info(
|
80 |
-
"--- Initializing Image Analyzer pipeline
|
81 |
)
|
82 |
-
#
|
|
|
|
|
83 |
image_to_text_pipeline = pipeline(
|
84 |
"image-to-text", model="Salesforce/blip-image-captioning-base"
|
85 |
)
|
86 |
logging.info("--- Image Analyzer pipeline initialized. ---")
|
87 |
|
88 |
-
# More robustly handle the pipeline output
|
89 |
pipeline_output = image_to_text_pipeline(image_url)
|
90 |
if (
|
91 |
pipeline_output
|
@@ -93,14 +102,10 @@ def image_analyzer(image_url: str):
|
|
93 |
and len(pipeline_output) > 0
|
94 |
):
|
95 |
description = pipeline_output[0].get(
|
96 |
-
"generated_text", "Error: Could not
|
97 |
)
|
98 |
else:
|
99 |
-
logging.error(
|
100 |
-
f"Image analyzer returned no or invalid output for URL: {image_url}"
|
101 |
-
)
|
102 |
description = "Error: Could not analyze image."
|
103 |
-
|
104 |
return description
|
105 |
except Exception as e:
|
106 |
logging.error(f"Error analyzing image: {e}")
|
@@ -108,8 +113,8 @@ def image_analyzer(image_url: str):
|
|
108 |
|
109 |
|
110 |
@tool
|
111 |
-
def youtube_transcript_reader(youtube_url: str):
|
112 |
-
"""Reads the transcript of a YouTube video."""
|
113 |
logging.info(
|
114 |
f"--- Calling YouTube Transcript Reader Tool with URL: {youtube_url} ---"
|
115 |
)
|
@@ -117,11 +122,11 @@ def youtube_transcript_reader(youtube_url: str):
|
|
117 |
loader = YoutubeLoader.from_youtube_url(youtube_url, add_video_info=False)
|
118 |
docs = loader.load()
|
119 |
transcript = " ".join([doc.page_content for doc in docs])
|
120 |
-
# Return a manageable chunk
|
121 |
return transcript[:4000]
|
122 |
except Exception as e:
|
123 |
logging.error(f"Error reading YouTube transcript: {e}")
|
124 |
-
return f"Error
|
125 |
|
126 |
|
127 |
# --- Agent State Definition ---
|
@@ -142,32 +147,22 @@ class GaiaAgent:
|
|
142 |
youtube_transcript_reader,
|
143 |
]
|
144 |
|
145 |
-
#
|
146 |
-
|
147 |
-
#
|
148 |
-
|
149 |
-
|
|
|
|
|
150 |
task="text-generation",
|
151 |
-
|
152 |
-
"max_new_tokens": 512,
|
153 |
-
"top_k": 50,
|
154 |
-
"temperature": 0.1,
|
155 |
-
"do_sample": False,
|
156 |
-
},
|
157 |
-
torch_dtype="auto",
|
158 |
-
trust_remote_code=True, # Required for Phi-3
|
159 |
)
|
160 |
-
logging.info("LLM
|
161 |
|
162 |
# Create the agent graph
|
163 |
prompt = PromptTemplate(
|
164 |
template=SYSTEM_PROMPT
|
165 |
-
+ ""
|
166 |
-
Here is the current conversation:
|
167 |
-
{messages}
|
168 |
-
|
169 |
-
Question: {question}
|
170 |
-
""",
|
171 |
input_variables=["messages", "question"],
|
172 |
)
|
173 |
|
@@ -180,7 +175,7 @@ Question: {question}
|
|
180 |
graph.add_node("agent", self._call_agent)
|
181 |
graph.add_node("tools", self._call_tools)
|
182 |
graph.add_conditional_edges(
|
183 |
-
"agent", self._decide_action, {"tools": "tools"
|
184 |
)
|
185 |
graph.add_edge("tools", "agent")
|
186 |
graph.set_entry_point("agent")
|
@@ -206,11 +201,15 @@ Question: {question}
|
|
206 |
logging.info("--- Calling Tools ---")
|
207 |
raw_tool_call = state["messages"][-1]
|
208 |
|
209 |
-
# Simple regex to find tool calls like tool_name("argument") or tool_name(argument)
|
210 |
tool_call_match = re.search(r"(\w+)\s*\((.*?)\)", raw_tool_call, re.DOTALL)
|
211 |
if not tool_call_match:
|
212 |
logging.warning("No valid tool call found in agent response.")
|
213 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
214 |
|
215 |
tool_name = tool_call_match.group(1).strip()
|
216 |
tool_input_str = tool_call_match.group(2).strip()
|
@@ -237,31 +236,40 @@ Question: {question}
|
|
237 |
}
|
238 |
else:
|
239 |
logging.warning(f"Tool '{tool_name}' not found.")
|
240 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
241 |
|
242 |
def __call__(self, question: str) -> str:
|
243 |
-
logging.info(f"Agent received question: {question[:100]}...")
|
244 |
-
|
245 |
-
|
|
|
|
|
|
|
246 |
|
247 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
|
249 |
-
final_answer = final_state["messages"][-1]
|
250 |
|
251 |
-
|
252 |
-
match = re.search(
|
253 |
-
r"FINAL ANSWER:\s*(.*)", final_answer, re.IGNORECASE | re.DOTALL
|
254 |
-
)
|
255 |
-
if match:
|
256 |
-
extracted_answer = match.group(1).strip()
|
257 |
-
logging.info(f"Agent returning final answer: {extracted_answer}")
|
258 |
-
return extracted_answer
|
259 |
-
else:
|
260 |
-
logging.warning(
|
261 |
-
"Agent could not find a final answer in the required format."
|
262 |
-
)
|
263 |
-
# Return a fallback answer if parsing fails
|
264 |
-
return "Could not determine the final answer."
|
265 |
|
266 |
|
267 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
@@ -279,7 +287,10 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
279 |
space_id = os.getenv("SPACE_ID")
|
280 |
if not space_id:
|
281 |
logging.error("SPACE_ID environment variable is not set. Cannot proceed.")
|
282 |
-
return
|
|
|
|
|
|
|
283 |
|
284 |
api_url = DEFAULT_API_URL
|
285 |
questions_url = f"{api_url}/questions"
|
@@ -289,8 +300,8 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
289 |
try:
|
290 |
agent = GaiaAgent()
|
291 |
except Exception as e:
|
292 |
-
logging.critical(f"
|
293 |
-
return f"
|
294 |
|
295 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
296 |
logging.info(f"Agent code URL: {agent_code}")
|
@@ -305,7 +316,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
305 |
logging.warning("Fetched questions list is empty.")
|
306 |
return "Fetched questions list is empty.", None
|
307 |
logging.info(f"Fetched {len(questions_data)} questions.")
|
308 |
-
except
|
309 |
logging.error(f"Error fetching questions: {e}")
|
310 |
return f"Error fetching questions: {e}", None
|
311 |
|
@@ -313,9 +324,12 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
313 |
results_log = []
|
314 |
answers_payload = []
|
315 |
logging.info(f"Running agent on {len(questions_data)} questions...")
|
316 |
-
for item in questions_data:
|
317 |
task_id = item.get("task_id")
|
318 |
question_text = item.get("question")
|
|
|
|
|
|
|
319 |
if not task_id or question_text is None:
|
320 |
continue
|
321 |
|
@@ -378,18 +392,20 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
378 |
)
|
379 |
|
380 |
|
381 |
-
# --- Build Gradio Interface ---
|
382 |
with gr.Blocks() as demo:
|
383 |
gr.Markdown("# GAIA Agent Evaluation Runner")
|
384 |
gr.Markdown(
|
385 |
"""
|
386 |
**Instructions:**
|
|
|
387 |
1. This Space contains a `langgraph`-based agent equipped with tools for web search, math, image analysis, and YouTube transcript reading.
|
388 |
2. Log in to your Hugging Face account using the button below. Your HF username is used for the submission.
|
389 |
3. Click 'Run Evaluation & Submit All Answers' to fetch the questions, run the agent, submit the answers, and see your score.
|
|
|
390 |
---
|
391 |
**Disclaimer:**
|
392 |
-
|
393 |
"""
|
394 |
)
|
395 |
|
@@ -408,11 +424,8 @@ with gr.Blocks() as demo:
|
|
408 |
)
|
409 |
|
410 |
if __name__ == "__main__":
|
411 |
-
# Configure logging
|
412 |
logging.basicConfig(
|
413 |
-
level=logging.INFO,
|
414 |
-
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
415 |
-
datefmt="%Y-%m-%d %H:%M:%S",
|
416 |
)
|
417 |
-
logging.info("
|
418 |
demo.launch(debug=True, share=False)
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
import os
|
4 |
import re
|
5 |
import gradio as gr
|
6 |
import requests
|
7 |
import pandas as pd
|
|
|
8 |
import logging
|
9 |
+
import numexpr
|
10 |
+
from typing import TypedDict, Annotated
|
11 |
+
|
12 |
+
# --- Langchain & HF Imports ---
|
13 |
+
# CHANGED: Swapped local pipeline for Inference API and removed torch
|
14 |
+
from langchain_huggingface import HuggingFaceInferenceAPI
|
15 |
from langchain_community.tools import DuckDuckGoSearchRun
|
16 |
+
from langchain_core.prompts import PromptTemplate
|
|
|
|
|
17 |
from langchain_core.output_parsers import StrOutputParser
|
18 |
from langchain_core.tools import tool
|
19 |
from langgraph.graph import StateGraph, END
|
|
|
20 |
from langchain_community.document_loaders.youtube import YoutubeLoader
|
21 |
+
|
22 |
|
23 |
# --- Constants ---
|
24 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
25 |
+
# ADDED: A more robust prompt tailored for tool use with Llama 3
|
26 |
+
SYSTEM_PROMPT = """You are a helpful and expert assistant named GAIA, designed to answer questions accurately.
|
27 |
+
|
28 |
+
To do this, you have access to a set of tools. Based on the user's question, you must decide which tool to use, if any.
|
29 |
+
Your process is:
|
30 |
+
1. **Analyze the Question**: Understand what is being asked.
|
31 |
+
2. **Select a Tool**: If necessary, choose the best tool for the job. Your available tools are: `web_search`, `math_calculator`, `image_analyzer`, `youtube_transcript_reader`.
|
32 |
+
3. **Call the Tool**: Output a tool call in the format `tool_name("argument")`. For example: `web_search("what is the weather in Paris?")`.
|
33 |
+
4. **Analyze the Result**: Look at the tool's output.
|
34 |
+
5. **Final Answer**: If you have enough information, provide the final answer. If not, you can use another tool.
|
35 |
+
|
36 |
+
When you have the final answer, you **must** output it in the following format, and nothing else:
|
37 |
FINAL ANSWER: [YOUR FINAL ANSWER]
|
38 |
|
39 |
+
- YOUR FINAL ANSWER should be a number, a short string, or a comma-separated list.
|
40 |
+
- Do not use formatting like thousands separators or units unless the question explicitly asks for it.
|
41 |
+
- Do not add explanations or prose in the final answer.
|
|
|
42 |
|
43 |
Example:
|
44 |
Question: What is the capital of France?
|
|
|
50 |
|
51 |
# --- Tool Definitions ---
|
52 |
|
53 |
+
# Global variable for lazy loading the image pipeline
|
54 |
image_to_text_pipeline = None
|
55 |
|
56 |
|
57 |
@tool
|
58 |
+
def web_search(query: str) -> str:
|
59 |
+
"""Searches the web using DuckDuckGo for up-to-date information."""
|
60 |
logging.info(f"--- Calling Web Search Tool with query: {query} ---")
|
61 |
search = DuckDuckGoSearchRun()
|
62 |
return search.run(query)
|
63 |
|
64 |
|
65 |
@tool
|
66 |
+
def math_calculator(expression: str) -> str:
|
67 |
+
"""Calculates the result of a mathematical expression. Use it for any math operation."""
|
68 |
logging.info(f"--- Calling Math Calculator Tool with expression: {expression} ---")
|
69 |
try:
|
70 |
+
# Sanitize expression: allow only numbers, basic operators, and parentheses
|
71 |
+
if not re.match(r"^[0-9\.\+\-\*\/\(\)\s]+$", expression):
|
72 |
+
return "Error: Invalid characters in expression."
|
73 |
result = numexpr.evaluate(expression).item()
|
74 |
+
return str(result)
|
75 |
except Exception as e:
|
76 |
+
logging.error(f"Calculator error: {e}")
|
77 |
+
return f"Error: {e}"
|
78 |
|
79 |
|
80 |
@tool
|
81 |
+
def image_analyzer(image_url: str) -> str:
|
82 |
+
"""Analyzes an image from a URL and returns a text description."""
|
83 |
global image_to_text_pipeline
|
84 |
logging.info(f"--- Calling Image Analyzer Tool with URL: {image_url} ---")
|
85 |
try:
|
86 |
if image_to_text_pipeline is None:
|
87 |
logging.info(
|
88 |
+
"--- Initializing Image Analyzer pipeline (lazy loading)... ---"
|
89 |
)
|
90 |
+
# This pipeline is small enough to be loaded on demand in a ZeroGPU space
|
91 |
+
from transformers import pipeline
|
92 |
+
|
93 |
image_to_text_pipeline = pipeline(
|
94 |
"image-to-text", model="Salesforce/blip-image-captioning-base"
|
95 |
)
|
96 |
logging.info("--- Image Analyzer pipeline initialized. ---")
|
97 |
|
|
|
98 |
pipeline_output = image_to_text_pipeline(image_url)
|
99 |
if (
|
100 |
pipeline_output
|
|
|
102 |
and len(pipeline_output) > 0
|
103 |
):
|
104 |
description = pipeline_output[0].get(
|
105 |
+
"generated_text", "Error: Could not generate text."
|
106 |
)
|
107 |
else:
|
|
|
|
|
|
|
108 |
description = "Error: Could not analyze image."
|
|
|
109 |
return description
|
110 |
except Exception as e:
|
111 |
logging.error(f"Error analyzing image: {e}")
|
|
|
113 |
|
114 |
|
115 |
@tool
|
116 |
+
def youtube_transcript_reader(youtube_url: str) -> str:
|
117 |
+
"""Reads the transcript of a YouTube video from its URL."""
|
118 |
logging.info(
|
119 |
f"--- Calling YouTube Transcript Reader Tool with URL: {youtube_url} ---"
|
120 |
)
|
|
|
122 |
loader = YoutubeLoader.from_youtube_url(youtube_url, add_video_info=False)
|
123 |
docs = loader.load()
|
124 |
transcript = " ".join([doc.page_content for doc in docs])
|
125 |
+
# Return a manageable chunk
|
126 |
return transcript[:4000]
|
127 |
except Exception as e:
|
128 |
logging.error(f"Error reading YouTube transcript: {e}")
|
129 |
+
return f"Error: {e}"
|
130 |
|
131 |
|
132 |
# --- Agent State Definition ---
|
|
|
147 |
youtube_transcript_reader,
|
148 |
]
|
149 |
|
150 |
+
# CHANGED: Replaced local HuggingFacePipeline with HuggingFaceInferenceAPI
|
151 |
+
# This uses the Hugging Face Serverless API, offloading the memory and compute.
|
152 |
+
# It requires a HUGGING_FACE_HUB_TOKEN to be set in the Space secrets.
|
153 |
+
logging.info("Initializing LLM via Inference API...")
|
154 |
+
llm = HuggingFaceInferenceAPI(
|
155 |
+
model_id="meta-llama/Meta-Llama-3-8B-Instruct",
|
156 |
+
# repo_id="meta-llama/Meta-Llama-3-8B-Instruct", # Use repo_id if model_id gives issues
|
157 |
task="text-generation",
|
158 |
+
token=os.getenv("HUGGING_FACE_HUB_TOKEN"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
)
|
160 |
+
logging.info("LLM initialized successfully.")
|
161 |
|
162 |
# Create the agent graph
|
163 |
prompt = PromptTemplate(
|
164 |
template=SYSTEM_PROMPT
|
165 |
+
+ "\nHere is the current conversation:\n{messages}\n\nQuestion: {question}",
|
|
|
|
|
|
|
|
|
|
|
166 |
input_variables=["messages", "question"],
|
167 |
)
|
168 |
|
|
|
175 |
graph.add_node("agent", self._call_agent)
|
176 |
graph.add_node("tools", self._call_tools)
|
177 |
graph.add_conditional_edges(
|
178 |
+
"agent", self._decide_action, {END: END, "tools": "tools"}
|
179 |
)
|
180 |
graph.add_edge("tools", "agent")
|
181 |
graph.set_entry_point("agent")
|
|
|
201 |
logging.info("--- Calling Tools ---")
|
202 |
raw_tool_call = state["messages"][-1]
|
203 |
|
|
|
204 |
tool_call_match = re.search(r"(\w+)\s*\((.*?)\)", raw_tool_call, re.DOTALL)
|
205 |
if not tool_call_match:
|
206 |
logging.warning("No valid tool call found in agent response.")
|
207 |
+
return {
|
208 |
+
"messages": [
|
209 |
+
'No valid tool call found. Please format your response as `tool_name("argument")` or provide a `FINAL ANSWER:`.'
|
210 |
+
],
|
211 |
+
"sender": "tools",
|
212 |
+
}
|
213 |
|
214 |
tool_name = tool_call_match.group(1).strip()
|
215 |
tool_input_str = tool_call_match.group(2).strip()
|
|
|
236 |
}
|
237 |
else:
|
238 |
logging.warning(f"Tool '{tool_name}' not found.")
|
239 |
+
return {
|
240 |
+
"messages": [
|
241 |
+
f"Tool '{tool_name}' not found. Available tools are: web_search, math_calculator, image_analyzer, youtube_transcript_reader."
|
242 |
+
],
|
243 |
+
"sender": "tools",
|
244 |
+
}
|
245 |
|
246 |
def __call__(self, question: str) -> str:
|
247 |
+
logging.info(f"Agent received question (first 100 chars): {question[:100]}...")
|
248 |
+
try:
|
249 |
+
initial_state = {"question": question, "messages": [], "sender": "user"}
|
250 |
+
# Increased recursion limit for potentially complex questions
|
251 |
+
final_state = self.graph.invoke(initial_state, {"recursion_limit": 15})
|
252 |
+
final_response = final_state["messages"][-1]
|
253 |
|
254 |
+
match = re.search(
|
255 |
+
r"FINAL ANSWER:\s*(.*)", final_response, re.IGNORECASE | re.DOTALL
|
256 |
+
)
|
257 |
+
if match:
|
258 |
+
extracted_answer = match.group(1).strip()
|
259 |
+
logging.info(f"Agent returning final answer: {extracted_answer}")
|
260 |
+
return extracted_answer
|
261 |
+
else:
|
262 |
+
logging.warning(
|
263 |
+
"Agent could not find a final answer. Returning the last message."
|
264 |
+
)
|
265 |
+
# Fallback: return the last piece of the conversation if parsing fails
|
266 |
+
return final_response
|
267 |
+
except Exception as e:
|
268 |
+
logging.error(f"Error during agent invocation: {e}", exc_info=True)
|
269 |
+
return f"Error during agent invocation: {e}"
|
270 |
|
|
|
271 |
|
272 |
+
# --- Gradio App Logic (largely unchanged, but with enhanced logging) ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
|
274 |
|
275 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
|
287 |
space_id = os.getenv("SPACE_ID")
|
288 |
if not space_id:
|
289 |
logging.error("SPACE_ID environment variable is not set. Cannot proceed.")
|
290 |
+
return (
|
291 |
+
"CRITICAL ERROR: SPACE_ID environment variable is not set. Cannot generate submission.",
|
292 |
+
None,
|
293 |
+
)
|
294 |
|
295 |
api_url = DEFAULT_API_URL
|
296 |
questions_url = f"{api_url}/questions"
|
|
|
300 |
try:
|
301 |
agent = GaiaAgent()
|
302 |
except Exception as e:
|
303 |
+
logging.critical(f"Fatal error instantiating agent: {e}", exc_info=True)
|
304 |
+
return f"Fatal error initializing agent: {e}", None
|
305 |
|
306 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
307 |
logging.info(f"Agent code URL: {agent_code}")
|
|
|
316 |
logging.warning("Fetched questions list is empty.")
|
317 |
return "Fetched questions list is empty.", None
|
318 |
logging.info(f"Fetched {len(questions_data)} questions.")
|
319 |
+
except Exception as e:
|
320 |
logging.error(f"Error fetching questions: {e}")
|
321 |
return f"Error fetching questions: {e}", None
|
322 |
|
|
|
324 |
results_log = []
|
325 |
answers_payload = []
|
326 |
logging.info(f"Running agent on {len(questions_data)} questions...")
|
327 |
+
for i, item in enumerate(questions_data):
|
328 |
task_id = item.get("task_id")
|
329 |
question_text = item.get("question")
|
330 |
+
logging.info(
|
331 |
+
f"--- Processing question {i+1}/{len(questions_data)} (Task ID: {task_id}) ---"
|
332 |
+
)
|
333 |
if not task_id or question_text is None:
|
334 |
continue
|
335 |
|
|
|
392 |
)
|
393 |
|
394 |
|
395 |
+
# --- Build Gradio Interface (UI text is maintained as requested) ---
|
396 |
with gr.Blocks() as demo:
|
397 |
gr.Markdown("# GAIA Agent Evaluation Runner")
|
398 |
gr.Markdown(
|
399 |
"""
|
400 |
**Instructions:**
|
401 |
+
|
402 |
1. This Space contains a `langgraph`-based agent equipped with tools for web search, math, image analysis, and YouTube transcript reading.
|
403 |
2. Log in to your Hugging Face account using the button below. Your HF username is used for the submission.
|
404 |
3. Click 'Run Evaluation & Submit All Answers' to fetch the questions, run the agent, submit the answers, and see your score.
|
405 |
+
|
406 |
---
|
407 |
**Disclaimer:**
|
408 |
+
Once you click the submit button, please be patient. The agent needs time to process all the questions, which can take several minutes.
|
409 |
"""
|
410 |
)
|
411 |
|
|
|
424 |
)
|
425 |
|
426 |
if __name__ == "__main__":
|
|
|
427 |
logging.basicConfig(
|
428 |
+
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
|
|
|
|
429 |
)
|
430 |
+
logging.info("App Starting...")
|
431 |
demo.launch(debug=True, share=False)
|