File size: 3,056 Bytes
8ab94bb
d666f15
8ab94bb
 
 
d666f15
 
 
 
8ab94bb
 
 
 
 
 
d666f15
 
 
c0b02e4
d666f15
608f6fc
 
 
d666f15
608f6fc
 
d666f15
608f6fc
 
d666f15
608f6fc
 
d666f15
608f6fc
 
 
 
d666f15
608f6fc
 
 
 
d666f15
608f6fc
 
 
d666f15
 
 
 
 
8ab94bb
 
d666f15
8ab94bb
 
 
d666f15
8ab94bb
 
 
 
 
 
 
 
d666f15
 
8ab94bb
d666f15
 
28d01e2
d666f15
 
8ab94bb
d666f15
 
8ab94bb
 
 
d666f15
 
8ab94bb
 
d666f15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import gradio as gr
import cv2
import numpy as np
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
import base64
from PIL import Image
from io import BytesIO
import torch
import clip

# Load the segmentation model
sam_checkpoint = "sam_vit_h_4b8939.pth"
model_type = "vit_h"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)

# Load the CLIP model
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)

def find_similarity(base64_image, text_input):
    try:
        # Decode the base64 image to bytes
        image_bytes = base64.b64decode(base64_image)

        # Convert the bytes to a PIL image
        image = Image.open(BytesIO(image_bytes))

        # Preprocess the image
        image = preprocess(image).unsqueeze(0).to(device)

        # Prepare input text
        text_tokens = clip.tokenize([text_input]).to(device)

        # Encode image and text features
        with torch.no_grad():
            image_features = model.encode_image(image)
            text_features = model.encode_text(text_tokens)

        # Normalize features and calculate similarity
        image_features /= image_features.norm(dim=-1, keepdim=True)
        text_features /= text_features.norm(dim=-1, keepdim=True)
        similarity = (text_features @ image_features.T).squeeze(0).cpu().numpy()

        return similarity
    except Exception as e:
        return str(e)

# Define a function for image segmentation
def segment_image(input_image, text_input):
    image = cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
    mask_generator = SamAutomaticMaskGenerator(sam)
    masks = mask_generator.generate(image)

    segmented_regions = []  # List to store segmented regions with similarity scores

    for i, mask_dict in enumerate(masks):
        mask_data = (mask_dict['segmentation'] * 255).astype(np.uint8)
        segmented_region = cv2.bitwise_and(input_image, input_image, mask=mask_data)

        x, y, w, h = map(int, mask_dict['bbox'])
        cropped_region = segmented_region[y:y+h, x:x+w]

        # Convert to base64 image
        _, buffer = cv2.imencode(".png", cv2.cvtColor(cropped_region, cv2.COLOR_BGR2RGB))
        segmented_image_base64 = base64.b64encode(buffer).decode()

        # Calculate similarity for the segmented image
        similarity = find_similarity(segmented_image_base64, text_input)

        # Append the segmented image and its similarity score
        segmented_regions.append({"image": segmented_image_base64, "similarity": similarity})

    # Sort the segmented images by similarity in descending order
    segmented_regions.sort(key=lambda x: x["similarity"], reverse=True)

    # Return the segmented images in descending order of similarity
    return segmented_regions

# Create Gradio components
input_image = gr.inputs.Image()
text_input = gr.inputs.Text()
output_images = gr.outputs.JSON()

# Create a Gradio interface
gr.Interface(fn=segment_image, inputs=[input_image, text_input], outputs=output_images).launch()