File size: 5,786 Bytes
44ad3d8
41356b7
44ad3d8
41356b7
 
 
8eea83b
41356b7
a1c2179
8eea83b
41356b7
a1c2179
8eea83b
41356b7
8eea83b
a1c2179
 
 
 
 
 
 
41356b7
a1c2179
 
 
 
 
41356b7
8eea83b
 
 
 
 
 
 
a1c2179
 
8eea83b
a1c2179
2fc3066
 
a1c2179
63bf93b
2e77031
ad1e8d1
bf1d858
41356b7
 
a1c2179
 
ad1e8d1
bf1d858
 
41356b7
bf1d858
a1c2179
2fc3066
 
ad1e8d1
2fc3066
8eea83b
a1c2179
 
 
 
2fc3066
ad1e8d1
2fc3066
8eea83b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44ad3d8
a1c2179
 
4fcae56
41356b7
a1c2179
e50eca6
4fcae56
2fc3066
a1c2179
bf1d858
40f8621
2fc3066
ba9d2c1
ad1e8d1
bf1d858
 
 
2fc3066
bf1d858
 
8eea83b
bf1d858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad1e8d1
bf1d858
a1c2179
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import streamlit as st
from huggingface_hub import hf_hub_download
from ultralytics import YOLO
import cv2
import numpy as np
from PIL import Image
from tensorflow.keras.models import load_model

# Title for the Streamlit App
st.title("Nepal Vehicle License Plate and Character Recognition")

# Description
st.write("Upload an image to detect license plates, segment characters, and recognize each character using advanced YOLO and CNN models.")

# Download YOLO and CNN model weights from Hugging Face
@st.cache_resource
def load_models():
    # Full license plate detection model
    full_plate_model_path = hf_hub_download(
        repo_id="krishnamishra8848/Nepal-Vehicle-License-Plate-Detection", filename="last.pt"
    )
    full_plate_model = YOLO(full_plate_model_path)

    # Character detection model
    character_model_path = hf_hub_download(
        repo_id="krishnamishra8848/Nepal_Vehicle_License_Plates_Detection_Version3", filename="best.pt"
    )
    character_model = YOLO(character_model_path)

    # Character recognition model
    recognition_model_path = hf_hub_download(
        repo_id="krishnamishra8848/Nepal_Vehicle_License_Plates_Character_Recognisation", filename="model.h5"
    )
    recognition_model = load_model(recognition_model_path)

    return full_plate_model, character_model, recognition_model

# Load models
full_plate_model, character_model, recognition_model = load_models()

# Function to detect license plates
def detect_license_plate(image):
    img_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
    results = full_plate_model(img_bgr)

    detected_image = img_bgr.copy()
    cropped_plates = []
    for result in results:
        if hasattr(result, 'boxes') and result.boxes is not None:
            for box in result.boxes.xyxy:
                x1, y1, x2, y2 = map(int, box)
                cv2.rectangle(detected_image, (x1, y1), (x2, y2), (255, 0, 0), 2)  # Draw bounding box
                cropped_plate = img_bgr[y1:y2, x1:x2]
                cropped_plates.append(cropped_plate)

    return detected_image, img_bgr, cropped_plates

# Function to detect characters
def detect_characters(image):
    results = character_model(image)
    detected_image = image.copy()
    character_crops = []
    for result in results:
        if hasattr(result, 'boxes') and result.boxes is not None:
            for box in result.boxes.xyxy:
                x1, y1, x2, y2 = map(int, box)
                cv2.rectangle(detected_image, (x1, y1), (x2, y2), (0, 255, 0), 2)  # Draw bounding box
                character_crops.append(image[y1:y2, x1:x2])
    return detected_image, character_crops

# Function to recognize characters
def recognize_characters(character_crops):
    class_labels = [
        'क', 'को', 'ख', 'ग', 'च', 'ज', 'झ', 'ञ', 'डि', 'त', 'ना', 'प',
        'प्र', 'ब', 'बा', 'भे', 'म', 'मे', 'य', 'लु', 'सी', 'सु', 'से', 'ह',
        '०', '१', '२', '३', '४', '५', '६', '७', '८', '९'
    ]
    recognized_characters = []
    for char_crop in character_crops:
        # Preprocess the cropped character for recognition model
        resized = cv2.resize(char_crop, (64, 64))
        normalized = resized / 255.0
        reshaped = np.expand_dims(normalized, axis=0)  # Add batch dimension

        # Predict the character
        prediction = recognition_model.predict(reshaped)
        predicted_class = class_labels[np.argmax(prediction)]
        recognized_characters.append(predicted_class)
    return recognized_characters

# Upload an image file
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])

if uploaded_file is not None:
    # Load image
    image = Image.open(uploaded_file)

    # Detect license plates
    with st.spinner("Processing image..."):
        detected_image, original_image, cropped_plates = detect_license_plate(image)

        # Show the detected license plate image with bounding boxes
        st.image(cv2.cvtColor(detected_image, cv2.COLOR_BGR2RGB), caption="Detected License Plates", use_container_width=True)

        # Initialize variables for comparison
        max_characters = []
        best_recognition_method = ""

        # Process original image for character detection
        char_detected_img, character_crops_original = detect_characters(original_image)

        # Recognize characters from original image
        recognized_original = recognize_characters(character_crops_original)

        if recognized_original:
            if len(recognized_original) > len(max_characters):
                max_characters = recognized_original
                best_recognition_method = "Original Image"

        # Process cropped plates for character detection
        for idx, cropped_plate in enumerate(cropped_plates, 1):
            st.write(f"Processing Cropped Plate {idx}:")
            cropped_char_detected_img, character_crops_cropped = detect_characters(cropped_plate)
            recognized_cropped = recognize_characters(character_crops_cropped)

            if recognized_cropped:
                if len(recognized_cropped) > len(max_characters):
                    max_characters = recognized_cropped
                    best_recognition_method = f"Cropped Plate {idx}"

        # Show the result
        st.image(cv2.cvtColor(char_detected_img, cv2.COLOR_BGR2RGB), caption="Detected Characters from Original Image", use_container_width=True)

        if best_recognition_method:
            st.write(f"Best Recognition Method: {best_recognition_method}")
            st.write("Recognized Characters:", "".join(max_characters))
        else:
            st.write("No characters detected in any method.")

    st.success("Processing complete!")