Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from ultralytics import YOLO
|
3 |
+
from PIL import Image, ImageDraw
|
4 |
+
import requests
|
5 |
+
import tempfile
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Download YOLOv8 model from Hugging Face
|
9 |
+
model_url = "https://huggingface.co/krishnamishra8848/Nepal_Vehicle_License_Plates_Detection_Version2/resolve/main/best.pt"
|
10 |
+
model_path = "best.pt"
|
11 |
+
|
12 |
+
# Download the model if not already downloaded
|
13 |
+
if not os.path.exists(model_path):
|
14 |
+
st.info("Downloading model from Hugging Face...")
|
15 |
+
with open(model_path, "wb") as f:
|
16 |
+
response = requests.get(model_url)
|
17 |
+
f.write(response.content)
|
18 |
+
st.success("Model downloaded successfully!")
|
19 |
+
|
20 |
+
# Load the YOLOv8 model
|
21 |
+
model = YOLO(model_path)
|
22 |
+
|
23 |
+
# App title
|
24 |
+
st.title("Nepal Vehicle License Plate Detection")
|
25 |
+
st.write("Upload an image to detect vehicle license plates along with their confidence scores.")
|
26 |
+
|
27 |
+
# Upload image
|
28 |
+
uploaded_image = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"])
|
29 |
+
|
30 |
+
if uploaded_image is not None:
|
31 |
+
# Display the uploaded image
|
32 |
+
image = Image.open(uploaded_image)
|
33 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
34 |
+
|
35 |
+
# Run YOLOv8 inference
|
36 |
+
with st.spinner("Running detection..."):
|
37 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False)
|
38 |
+
temp_file.write(uploaded_image.read())
|
39 |
+
results = model(temp_file.name)
|
40 |
+
|
41 |
+
# Draw bounding boxes and confidence scores on the image
|
42 |
+
draw = ImageDraw.Draw(image)
|
43 |
+
results_table = []
|
44 |
+
for box in results[0].boxes:
|
45 |
+
# Get bounding box coordinates and confidence score
|
46 |
+
x_min, y_min, x_max, y_max = map(int, box.xyxy[0].tolist())
|
47 |
+
confidence = box.conf.item()
|
48 |
+
label = f"Plate: {confidence:.2f}"
|
49 |
+
|
50 |
+
# Draw rectangle and label
|
51 |
+
draw.rectangle([(x_min, y_min), (x_max, y_max)], outline="red", width=3)
|
52 |
+
draw.text((x_min, y_min - 10), label, fill="red")
|
53 |
+
|
54 |
+
# Append detection to the table
|
55 |
+
results_table.append({"x_min": x_min, "y_min": y_min, "x_max": x_max, "y_max": y_max, "confidence": confidence})
|
56 |
+
|
57 |
+
# Display the resulting image with bounding boxes
|
58 |
+
st.image(image, caption="Detected Image", use_column_width=True)
|
59 |
+
|
60 |
+
# Show individual detections in a table
|
61 |
+
st.write("### Detection Results")
|
62 |
+
st.write(results_table)
|