Update app.py
Browse files
app.py
CHANGED
|
@@ -4,17 +4,17 @@ from ultralytics import YOLO
|
|
| 4 |
import cv2
|
| 5 |
import numpy as np
|
| 6 |
from PIL import Image
|
| 7 |
-
|
| 8 |
import tempfile
|
| 9 |
import os
|
| 10 |
|
| 11 |
# Title for the Streamlit App
|
| 12 |
-
st.title("Nepal Vehicle License Plate and Character
|
| 13 |
|
| 14 |
# Description
|
| 15 |
-
st.write("Upload an image to detect license plates and
|
| 16 |
|
| 17 |
-
# Download YOLO model weights from Hugging Face
|
| 18 |
@st.cache_resource
|
| 19 |
def load_models():
|
| 20 |
# Full license plate detection model
|
|
@@ -29,10 +29,16 @@ def load_models():
|
|
| 29 |
)
|
| 30 |
character_model = YOLO(character_model_path)
|
| 31 |
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
# Load models
|
| 35 |
-
full_plate_model, character_model = load_models()
|
| 36 |
|
| 37 |
# Function to detect and crop license plates
|
| 38 |
def detect_and_crop_license_plate(image):
|
|
@@ -51,16 +57,36 @@ def detect_and_crop_license_plate(image):
|
|
| 51 |
|
| 52 |
return cropped_images, detected_image
|
| 53 |
|
| 54 |
-
# Function to detect characters
|
| 55 |
-
def
|
| 56 |
results = character_model(image)
|
|
|
|
| 57 |
for result in results:
|
| 58 |
if hasattr(result, 'boxes') and result.boxes is not None:
|
| 59 |
for box in result.boxes.xyxy:
|
| 60 |
x1, y1, x2, y2 = map(int, box)
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
# Upload an image file
|
| 66 |
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
|
|
@@ -77,15 +103,24 @@ if uploaded_file is not None:
|
|
| 77 |
st.image(cv2.cvtColor(detected_image, cv2.COLOR_BGR2RGB), caption="Detected License Plates", use_container_width=True)
|
| 78 |
|
| 79 |
if cropped_plates:
|
| 80 |
-
st.write(f"Detected {len(cropped_plates)} license plate(s).
|
| 81 |
for idx, cropped_image in enumerate(cropped_plates, 1):
|
| 82 |
-
st.write(f"License Plate {idx}:")
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
else:
|
| 87 |
-
st.write("No license plates detected.
|
| 88 |
-
annotated_image = detect_characters(detected_image.copy())
|
| 89 |
-
st.image(cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB), caption="Full Image with Characters", use_container_width=True)
|
| 90 |
|
| 91 |
st.success("Processing complete!")
|
|
|
|
| 4 |
import cv2
|
| 5 |
import numpy as np
|
| 6 |
from PIL import Image
|
| 7 |
+
from tensorflow.keras.models import load_model
|
| 8 |
import tempfile
|
| 9 |
import os
|
| 10 |
|
| 11 |
# Title for the Streamlit App
|
| 12 |
+
st.title("Nepal Vehicle License Plate and Character Recognition")
|
| 13 |
|
| 14 |
# Description
|
| 15 |
+
st.write("Upload an image to detect license plates, segment characters, and recognize each character using advanced YOLO and CNN models.")
|
| 16 |
|
| 17 |
+
# Download YOLO and CNN model weights from Hugging Face
|
| 18 |
@st.cache_resource
|
| 19 |
def load_models():
|
| 20 |
# Full license plate detection model
|
|
|
|
| 29 |
)
|
| 30 |
character_model = YOLO(character_model_path)
|
| 31 |
|
| 32 |
+
# Character recognition model
|
| 33 |
+
recognition_model_path = hf_hub_download(
|
| 34 |
+
repo_id="krishnamishra8848/Nepal_Vehicle_License_Plates_Character_Recognisation", filename="model.h5"
|
| 35 |
+
)
|
| 36 |
+
recognition_model = load_model(recognition_model_path)
|
| 37 |
+
|
| 38 |
+
return full_plate_model, character_model, recognition_model
|
| 39 |
|
| 40 |
# Load models
|
| 41 |
+
full_plate_model, character_model, recognition_model = load_models()
|
| 42 |
|
| 43 |
# Function to detect and crop license plates
|
| 44 |
def detect_and_crop_license_plate(image):
|
|
|
|
| 57 |
|
| 58 |
return cropped_images, detected_image
|
| 59 |
|
| 60 |
+
# Function to detect and crop characters
|
| 61 |
+
def detect_and_crop_characters(image):
|
| 62 |
results = character_model(image)
|
| 63 |
+
character_crops = []
|
| 64 |
for result in results:
|
| 65 |
if hasattr(result, 'boxes') and result.boxes is not None:
|
| 66 |
for box in result.boxes.xyxy:
|
| 67 |
x1, y1, x2, y2 = map(int, box)
|
| 68 |
+
character_crops.append(image[y1:y2, x1:x2])
|
| 69 |
+
return character_crops
|
| 70 |
+
|
| 71 |
+
# Function to recognize characters
|
| 72 |
+
def recognize_characters(character_crops):
|
| 73 |
+
class_labels = [
|
| 74 |
+
'क', 'को', 'ख', 'ग', 'च', 'ज', 'झ', 'ञ', 'डि', 'त', 'ना', 'प',
|
| 75 |
+
'प्र', 'ब', 'बा', 'भे', 'म', 'मे', 'य', 'लु', 'सी', 'सु', 'से', 'ह',
|
| 76 |
+
'०', '१', '२', '३', '४', '५', '६', '७', '८', '९'
|
| 77 |
+
]
|
| 78 |
+
recognized_characters = []
|
| 79 |
+
for char_crop in character_crops:
|
| 80 |
+
# Preprocess the cropped character for recognition model
|
| 81 |
+
resized = cv2.resize(char_crop, (64, 64))
|
| 82 |
+
normalized = resized / 255.0
|
| 83 |
+
reshaped = np.expand_dims(normalized, axis=0) # Add batch dimension
|
| 84 |
+
|
| 85 |
+
# Predict the character
|
| 86 |
+
prediction = recognition_model.predict(reshaped)
|
| 87 |
+
predicted_class = class_labels[np.argmax(prediction)]
|
| 88 |
+
recognized_characters.append(predicted_class)
|
| 89 |
+
return recognized_characters
|
| 90 |
|
| 91 |
# Upload an image file
|
| 92 |
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
|
|
|
|
| 103 |
st.image(cv2.cvtColor(detected_image, cv2.COLOR_BGR2RGB), caption="Detected License Plates", use_container_width=True)
|
| 104 |
|
| 105 |
if cropped_plates:
|
| 106 |
+
st.write(f"Detected {len(cropped_plates)} license plate(s).")
|
| 107 |
for idx, cropped_image in enumerate(cropped_plates, 1):
|
| 108 |
+
st.write(f"Processing License Plate {idx}:")
|
| 109 |
+
|
| 110 |
+
# Detect and crop characters
|
| 111 |
+
character_crops = detect_and_crop_characters(cropped_image)
|
| 112 |
+
|
| 113 |
+
if character_crops:
|
| 114 |
+
# Recognize characters
|
| 115 |
+
recognized_characters = recognize_characters(character_crops)
|
| 116 |
+
|
| 117 |
+
# Show each cropped character and prediction
|
| 118 |
+
for i, char_crop in enumerate(character_crops):
|
| 119 |
+
st.image(cv2.cvtColor(char_crop, cv2.COLOR_BGR2RGB), caption=f"Character {i+1}")
|
| 120 |
+
st.write(f"Predicted Character: {recognized_characters[i]}")
|
| 121 |
+
else:
|
| 122 |
+
st.write("No characters detected in this license plate.")
|
| 123 |
else:
|
| 124 |
+
st.write("No license plates detected.")
|
|
|
|
|
|
|
| 125 |
|
| 126 |
st.success("Processing complete!")
|