File size: 5,073 Bytes
44ad3d8 41356b7 44ad3d8 41356b7 8eea83b a1c2179 41356b7 a1c2179 8eea83b 41356b7 a1c2179 8eea83b 41356b7 8eea83b a1c2179 41356b7 a1c2179 41356b7 8eea83b a1c2179 8eea83b a1c2179 63bf93b 2e77031 40f8621 a1c2179 41356b7 a1c2179 40f8621 63bf93b 41356b7 40f8621 a1c2179 8eea83b a1c2179 8eea83b a1c2179 8eea83b 44ad3d8 a1c2179 4fcae56 41356b7 a1c2179 e50eca6 4fcae56 a1c2179 40f8621 a1c2179 8eea83b a1c2179 8eea83b a1c2179 8eea83b a1c2179 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import streamlit as st
from huggingface_hub import hf_hub_download
from ultralytics import YOLO
import cv2
import numpy as np
from PIL import Image
from tensorflow.keras.models import load_model
import tempfile
import os
# Title for the Streamlit App
st.title("Nepal Vehicle License Plate and Character Recognition")
# Description
st.write("Upload an image to detect license plates, segment characters, and recognize each character using advanced YOLO and CNN models.")
# Download YOLO and CNN model weights from Hugging Face
@st.cache_resource
def load_models():
# Full license plate detection model
full_plate_model_path = hf_hub_download(
repo_id="krishnamishra8848/Nepal-Vehicle-License-Plate-Detection", filename="last.pt"
)
full_plate_model = YOLO(full_plate_model_path)
# Character detection model
character_model_path = hf_hub_download(
repo_id="krishnamishra8848/Nepal_Vehicle_License_Plates_Detection_Version3", filename="best.pt"
)
character_model = YOLO(character_model_path)
# Character recognition model
recognition_model_path = hf_hub_download(
repo_id="krishnamishra8848/Nepal_Vehicle_License_Plates_Character_Recognisation", filename="model.h5"
)
recognition_model = load_model(recognition_model_path)
return full_plate_model, character_model, recognition_model
# Load models
full_plate_model, character_model, recognition_model = load_models()
# Function to detect and crop license plates
def detect_and_crop_license_plate(image):
img_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
results = full_plate_model(img_bgr)
detected_image = img_bgr.copy()
cropped_images = []
for result in results:
if hasattr(result, 'boxes') and result.boxes is not None:
for box in result.boxes.xyxy:
x1, y1, x2, y2 = map(int, box)
cv2.rectangle(detected_image, (x1, y1), (x2, y2), (255, 0, 0), 2) # Draw bounding box
cropped_image = img_bgr[y1:y2, x1:x2]
cropped_images.append(cropped_image)
return cropped_images, detected_image
# Function to detect and crop characters
def detect_and_crop_characters(image):
results = character_model(image)
character_crops = []
for result in results:
if hasattr(result, 'boxes') and result.boxes is not None:
for box in result.boxes.xyxy:
x1, y1, x2, y2 = map(int, box)
character_crops.append(image[y1:y2, x1:x2])
return character_crops
# Function to recognize characters
def recognize_characters(character_crops):
class_labels = [
'क', 'को', 'ख', 'ग', 'च', 'ज', 'झ', 'ञ', 'डि', 'त', 'ना', 'प',
'प्र', 'ब', 'बा', 'भे', 'म', 'मे', 'य', 'लु', 'सी', 'सु', 'से', 'ह',
'०', '१', '२', '३', '४', '५', '६', '७', '८', '९'
]
recognized_characters = []
for char_crop in character_crops:
# Preprocess the cropped character for recognition model
resized = cv2.resize(char_crop, (64, 64))
normalized = resized / 255.0
reshaped = np.expand_dims(normalized, axis=0) # Add batch dimension
# Predict the character
prediction = recognition_model.predict(reshaped)
predicted_class = class_labels[np.argmax(prediction)]
recognized_characters.append(predicted_class)
return recognized_characters
# Upload an image file
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Load image
image = Image.open(uploaded_file)
# Detect license plates and characters
with st.spinner("Processing image..."):
cropped_plates, detected_image = detect_and_crop_license_plate(image)
# Show the image with detected license plates
st.image(cv2.cvtColor(detected_image, cv2.COLOR_BGR2RGB), caption="Detected License Plates", use_container_width=True)
if cropped_plates:
st.write(f"Detected {len(cropped_plates)} license plate(s).")
for idx, cropped_image in enumerate(cropped_plates, 1):
st.write(f"Processing License Plate {idx}:")
# Detect and crop characters
character_crops = detect_and_crop_characters(cropped_image)
if character_crops:
# Recognize characters
recognized_characters = recognize_characters(character_crops)
# Show each cropped character and prediction
for i, char_crop in enumerate(character_crops):
st.image(cv2.cvtColor(char_crop, cv2.COLOR_BGR2RGB), caption=f"Character {i+1}")
st.write(f"Predicted Character: {recognized_characters[i]}")
else:
st.write("No characters detected in this license plate.")
else:
st.write("No license plates detected.")
st.success("Processing complete!")
|