File size: 9,033 Bytes
ed5c13a
 
 
 
 
 
 
 
 
a77b32c
ed5c13a
 
 
 
1ef76af
ed5c13a
 
 
 
 
 
 
1ef76af
ed5c13a
 
 
 
1ef76af
ed5c13a
a77b32c
 
1ef76af
 
a77b32c
 
 
 
 
1ef76af
 
 
 
 
 
 
 
 
 
 
a77b32c
 
 
 
 
 
1ef76af
a77b32c
 
 
 
 
 
 
 
 
 
1ef76af
 
 
 
 
 
 
 
a77b32c
 
1ef76af
 
 
a77b32c
 
1ef76af
 
 
 
a77b32c
 
 
ed5c13a
 
 
 
 
 
 
 
 
 
 
1ef76af
 
 
ed5c13a
 
 
 
a77b32c
ed5c13a
a77b32c
ed5c13a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ef76af
ed5c13a
 
 
a77b32c
ed5c13a
 
 
 
 
 
 
 
 
 
 
 
 
 
1ef76af
ed5c13a
 
 
1ef76af
ed5c13a
 
 
 
 
 
a77b32c
 
 
 
 
 
ed5c13a
 
 
 
1ef76af
ed5c13a
 
 
 
 
 
 
1ef76af
ed5c13a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a77b32c
 
 
ed5c13a
 
a77b32c
ed5c13a
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import gradio as gr
import logging
from roboflow import Roboflow
from PIL import Image, ImageDraw
import cv2
import numpy as np
import os
from math import atan2, degrees
import asyncio
import multiprocessing

# Configure logging
logging.basicConfig(
    level=logging.DEBUG,
    format="%(asctime)s - %(levelname)s - %(message)s",
    handlers=[
        logging.FileHandler("debug.log"),
        logging.StreamHandler()
    ]
)

# Roboflow and model configuration
ROBOFLOW_API_KEY = "KUP9w62eUcD5PrrRMJsV"  # Replace with your API key if needed
PROJECT_NAME = "model_verification_project"
VERSION_NUMBER = 2

# ----------------------------
# Function to generate handwriting image using Pyppeteer in a separate process
# ----------------------------
def generate_handwriting_image_process(text_prompt, screenshot_path, return_dict):
    """
    This function runs in a separate process so that Pyppeteer's signal handling
    works correctly in its main thread.
    """
    import asyncio
    from pyppeteer import launch

    async def _generate():
        # Launch Chromium with additional flags for containerized environments
        browser = await launch(
            headless=True,
            args=[
                '--no-sandbox',
                '--disable-setuid-sandbox',
                '--disable-dev-shm-usage',
                '--disable-gpu',
                '--single-process'
            ]
        )
        page = await browser.newPage()
        await page.goto('https://www.calligraphr.com/en/font/', {'waitUntil': 'networkidle2'})
        await page.waitForSelector('#text-input')
        await page.type('#text-input', text_prompt)
        await asyncio.sleep(2)  # Wait for the handwriting preview to render

        # Adjust the clip values as needed to capture the proper area of the page
        await page.screenshot({
            'path': screenshot_path,
            'clip': {'x': 100, 'y': 200, 'width': 600, 'height': 150}
        })
        await browser.close()
        return screenshot_path

    # Create a new event loop for this process
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)
    try:
        result = loop.run_until_complete(_generate())
        return_dict['result'] = result
    except Exception as e:
        logging.error("Error in handwriting generation process: " + str(e))
        return_dict['result'] = None
    finally:
        loop.close()

def get_handwriting_image(text_prompt, screenshot_path="/tmp/handwriting.png"):
    """
    Starts a separate process to generate a handwriting image and returns the image path.
    """
    manager = multiprocessing.Manager()
    return_dict = manager.dict()
    process = multiprocessing.Process(
        target=generate_handwriting_image_process,
        args=(text_prompt, screenshot_path, return_dict)
    )
    process.start()
    process.join()
    return return_dict.get('result', None)

# ----------------------------
# Helper: Detect paper angle within bounding box
# ----------------------------
def detect_paper_angle(image, bounding_box):
    x1, y1, x2, y2 = bounding_box
    roi = np.array(image)[y1:y2, x1:x2]
    gray = cv2.cvtColor(roi, cv2.COLOR_RGBA2GRAY)
    edges = cv2.Canny(gray, 50, 150)
    lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=50, maxLineGap=10)
    if lines is not None:
        longest_line = max(
            lines, key=lambda line: np.linalg.norm((line[0][2] - line[0][0], line[0][3] - line[0][1]))
        )
        x1_line, y1_line, x2_line, y2_line = longest_line[0]
        dx = x2_line - x1_line
        dy = y2_line - y1_line
        angle = degrees(atan2(dy, dx))
        return angle
    else:
        return 0

# ----------------------------
# Main processing function
# ----------------------------
def process_image(image, text):
    try:
        # Initialize Roboflow
        rf = Roboflow(api_key=ROBOFLOW_API_KEY)
        logging.debug("Initialized Roboflow API.")
        project = rf.workspace().project(PROJECT_NAME)
        logging.debug("Accessed project in Roboflow.")
        model = project.version(VERSION_NUMBER).model
        logging.debug("Loaded model from Roboflow.")

        # Save input image temporarily
        input_image_path = "/tmp/input_image.jpg"
        image.save(input_image_path)
        logging.debug(f"Input image saved to {input_image_path}.")

        # Perform inference
        logging.debug("Performing inference on the image...")
        prediction = model.predict(input_image_path, confidence=70, overlap=50).json()
        logging.debug(f"Inference result: {prediction}")

        # Convert image for processing
        pil_image = image.convert("RGBA")
        logging.debug("Converted image to RGBA mode.")

        # Process each detected object (assumed to be white paper)
        for obj in prediction['predictions']:
            white_paper_width = obj['width']
            white_paper_height = obj['height']
            padding_x = int(white_paper_width * 0.1)
            padding_y = int(white_paper_height * 0.1)
            box_width = white_paper_width - 2 * padding_x
            box_height = white_paper_height - 2 * padding_y
            logging.debug(f"Padded white paper dimensions: width={box_width}, height={box_height}.")

            x1_padded = int(obj['x'] - white_paper_width / 2 + padding_x)
            y1_padded = int(obj['y'] - white_paper_height / 2 + padding_y)
            x2_padded = int(obj['x'] + white_paper_width / 2 - padding_x)
            y2_padded = int(obj['y'] + white_paper_height / 2 - padding_y)

            # Detect paper angle
            angle = detect_paper_angle(np.array(image), (x1_padded, y1_padded, x2_padded, y2_padded))
            logging.debug(f"Detected paper angle: {angle} degrees.")

            # (Optional) Save a debug image with the bounding box drawn
            debug_layer = pil_image.copy()
            debug_draw = ImageDraw.Draw(debug_layer)
            debug_draw.rectangle([(x1_padded, y1_padded), (x2_padded, y2_padded)], outline="red", width=3)
            debug_layer.save("/tmp/debug_bounding_box.png")
            logging.debug("Saved bounding box debug image to /tmp/debug_bounding_box.png.")

            # Generate handwriting image using the separate process
            handwriting_path = get_handwriting_image(text, "/tmp/handwriting.png")
            if not handwriting_path:
                logging.error("Handwriting image generation failed.")
                continue

            handwriting_img = Image.open(handwriting_path).convert("RGBA")
            handwriting_img = handwriting_img.resize((box_width, box_height), Image.ANTIALIAS)
            rotated_handwriting = handwriting_img.rotate(-angle, resample=Image.BICUBIC, expand=True)

            # Composite the handwriting onto the original image
            text_layer = Image.new("RGBA", pil_image.size, (255, 255, 255, 0))
            paste_x = int(obj['x'] - rotated_handwriting.size[0] / 2)
            paste_y = int(obj['y'] - rotated_handwriting.size[1] / 2)
            text_layer.paste(rotated_handwriting, (paste_x, paste_y), rotated_handwriting)
            pil_image = Image.alpha_composite(pil_image, text_layer)
            logging.debug("Handwriting layer composited onto the original image.")

        # Save and return the output image
        output_image_path = "/tmp/output_image.png"
        pil_image.convert("RGB").save(output_image_path)
        logging.debug(f"Output image saved to {output_image_path}.")
        return output_image_path

    except Exception as e:
        logging.error(f"Error during image processing: {e}")
        return None

# ----------------------------
# Gradio interface function
# ----------------------------
def gradio_inference(image, text):
    logging.debug("Starting Gradio inference.")
    result_path = process_image(image, text)
    if result_path:
        logging.debug("Gradio inference successful.")
        return result_path, result_path, "Processing complete! Download the image below."
    logging.error("Gradio inference failed.")
    return None, None, "An error occurred while processing the image. Please check the logs."

# ----------------------------
# Gradio interface definition
# ----------------------------
interface = gr.Interface(
    fn=gradio_inference,
    inputs=[
        gr.Image(type="pil", label="Upload an Image"),
        gr.Textbox(label="Enter Text to Overlay")
    ],
    outputs=[
        gr.Image(label="Processed Image Preview"),
        gr.File(label="Download Processed Image"),
        gr.Textbox(label="Status")
    ],
    title="Roboflow Detection with Handwriting Overlay",
    description="Upload an image and enter text to overlay. The Roboflow model detects the white paper area, and a handwriting image is generated via Calligraphr using Pyppeteer. The output image is composited accordingly.",
    allow_flagging="never"
)

if __name__ == "__main__":
    logging.debug("Launching Gradio interface.")
    interface.launch(share=True)