File size: 2,986 Bytes
b72431a 4485599 b72431a d120f1f b72431a d120f1f b72431a d120f1f 4485599 d120f1f 4485599 d120f1f 4485599 d120f1f c767863 4485599 d120f1f 4485599 d120f1f 4485599 d120f1f 4485599 d120f1f b2414b4 d120f1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import gradio as gr
from transformers import TFBertModel, TFXLMRobertaModel
import numpy as np
import tensorflow as tf
from transformers import AutoTokenizer
app_title = "Portuguese Counter Hate Speech Detection (NFAA)"
app_description = """
This app is the culmination of the kNOwHATE consortium project, which aimed to tackle Online Hate Speech in the Portuguese comunity. It serves as an user-friendly interface to classify text and identify instances of Hate Speech.
This app leverages state-of-the-art Natural Language Processing models developed in the scope of this project to classify harmful text.
Select a model from the dropdown menu and input your text to see the classification results. Explore the examples of Hate Speech and Non-Hate Speech offered, and join us in fostering a safer and more respectful online community.
For more information about the kNOwHATE project and its initiatives, visit our website [here](https://knowhate.eu) and to explore and use these models visit our Hugging Face page [here](https://huggingface.co/knowhate).
"""
# 1 0 2
app_examples = [
["Essa gente tem é de deixar de ser apaparicada pelo Estado e começar a cumprir os seus deveres como cidadãos",
"Nepia o que faz com que as pessoas generalizem é o ódio intrínseco que têm contra uma etnia, ng é responsável pela sua xenofobia",
"knowhate/twt-bertimbau/twt-bb-b16e5-avg767.keras"],
["Nem vou comentar o hate e misoginia que tenho visto aqui no tt em relação à Anitta",
"E xenofobia também. Tugas no seu melhor",
"knowhate/twt-bertimbau/twt-bb-b16e5-avg767.keras"],
["A Festa tá no Climax, chama o zuca pra Dançar.",
"Já reparaste no contador da luz? Vai trabalhar malandro",
"knowhate/twt-bertimbau/twt-bb-b16e5-avg767.keras"]
]
model_list = [
"knowhate/twt-bertimbau/twt-bb-b16e5-avg767.keras"
]
def predict(text, target, chosen_model):
model1 = tf.keras.models.load_model(chosen_model, custom_objects={"TFBertModel": TFBertModel})
checkpoint = "neuralmind/bert-base-portuguese-cased"
tokenizer = AutoTokenizer.from_pretrained(checkpoint, use_fast=True)
tokpair = tokenizer(text, target, truncation=True, padding='max_length', return_tensors='np')
outp = model1(tokpair)
proto_tensor = tf.make_tensor_proto(outp)
allscores = tf.make_ndarray(proto_tensor)[0]
scores_dict = {
'Neutral': allscores[0],
'Counter Speech': allscores[1],
'Hate Speech': allscores[2]
}
return scores_dict
inputs = [
gr.Textbox(label="Context", value= app_examples[0][0]),
gr.Textbox(label="Target", value= app_examples[0][1]),
gr.Dropdown(label="Model", choices=model_list, value=model_list[0])
]
outputs = [
gr.Label(label="Result"),
]
gr.Interface(fn=predict, inputs=inputs, outputs=outputs, title=app_title,
description=app_description, examples=app_examples, theme=gr.themes.Base(primary_hue="red")).launch() |