pfialho commited on
Commit
d120f1f
·
verified ·
1 Parent(s): 91b67af

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +56 -59
app.py CHANGED
@@ -1,63 +1,60 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
 
 
 
 
 
42
  """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import torch
3
+ from transformers import pipeline
4
 
5
+ app_title = "Portuguese Counter Hate Speech Detection (NFAA)"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
+ app_description = """
8
+ This app is the culmination of the kNOwHATE consortium project, which aimed to tackle Online Hate Speech in the Portuguese comunity. It serves as an user-friendly interface to classify text and identify instances of Hate Speech.
9
+ This app leverages state-of-the-art Natural Language Processing models developed in the scope of this project to classify harmful text.
10
+ Select a model from the dropdown menu and input your text to see the classification results. Explore the examples of Hate Speech and Non-Hate Speech offered, and join us in fostering a safer and more respectful online community.
11
+ For more information about the kNOwHATE project and its initiatives, visit our website [here](https://knowhate.eu) and to explore and use these models visit our Hugging Face page [here](https://huggingface.co/knowhate).
12
  """
13
+
14
+ app_examples = [
15
+ ["As pessoas tem que perceber que ser 'panasca' não é deixar de ser homem, é deixar de ser humano 😂😂", "knowhate/HateBERTimbau-youtube"],
16
+ ["Vamo-nos unir para criar um mundo mais inclusivo e tolerante.", "knowhate/HateBERTimbau-twitter"],
17
+ ["Isso pulhiticos merdosos, continuem a importar lixo, até Portugal deixar de ser Portugal.", "knowhate/HateBERTimbau-yt-tt"],
18
+ ["Eu admiro muito a coragem e a determinação da minha colega de trabalho.", "knowhate/HateBERTimbau-twitter"],
19
+ ["Vai puta que te pariu seu paneleiro do caralho, virgem ofendida", "knowhate/HateBERTimbau-youtube"],
20
+ ["O tempo está ensolarado hoje, perfeito para um passeio no parque.", "knowhate/HateBERTimbau-yt-tt"]
21
+ ]
22
+
23
+ model_list = [
24
+ "knowhate/HateBERTimbau-youtube",
25
+ "knowhate/HateBERTimbau-twitter",
26
+ "knowhate/HateBERTimbau-yt-tt",
27
+ ]
28
+
29
+ def predict(text, target, chosen_model):
30
+
31
+ # Initialize the pipeline with the chosen model
32
+ model_pipeline = pipeline("text-classification", model=chosen_model)
33
+ result = model_pipeline(text)
34
+
35
+
36
+ predicted_label = result[0]['label']
37
+ predicted_score = result[0]['score']
38
+
39
+ non_predicted_label = "Hate Speech" if predicted_label == "Non Hate Speech" else "Non Hate Speech"
40
+ non_predicted_score = 1 - predicted_score
41
+
42
+ scores_dict = {
43
+ predicted_label: predicted_score,
44
+ non_predicted_label: non_predicted_score
45
+ }
46
+
47
+ return scores_dict
48
+
49
+ inputs = [
50
+ gr.Textbox(label="Text", value= app_examples[0][0]),
51
+ gr.Textbox(label="Text", value= app_examples[0][0]),
52
+ gr.Dropdown(label="Model", choices=model_list, value=model_list[2])
53
+ ]
54
+
55
+ outputs = [
56
+ gr.Label(label="Result"),
57
+ ]
58
+
59
+ gr.Interface(fn=predict, inputs=inputs, outputs=outputs, title=app_title,
60
+ description=app_description, examples=app_examples, theme=gr.themes.Base(primary_hue="red")).launch()