pfialho commited on
Commit
4485599
·
verified ·
1 Parent(s): b2414b4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -17
app.py CHANGED
@@ -1,6 +1,10 @@
1
  import gradio as gr
2
  import torch
3
- from transformers import pipeline
 
 
 
 
4
 
5
  app_title = "Portuguese Counter Hate Speech Detection (NFAA)"
6
 
@@ -11,32 +15,38 @@ Select a model from the dropdown menu and input your text to see the classificat
11
  For more information about the kNOwHATE project and its initiatives, visit our website [here](https://knowhate.eu) and to explore and use these models visit our Hugging Face page [here](https://huggingface.co/knowhate).
12
  """
13
 
 
14
  app_examples = [
15
- ["As pessoas tem que perceber que ser 'panasca' não é deixar de ser homem, é deixar de ser humano 😂😂", "", "knowhate/twt-bertimbau"],
16
- ["Vamo-nos unir para criar um mundo mais inclusivo e tolerante.", "", "knowhate/twt-xlm-base"]
 
 
 
 
 
 
 
17
  ]
18
 
19
  model_list = [
20
- "knowhate/twt-bertimbau",
21
- "knowhate/twt-xlm-base",
22
  ]
23
 
24
  def predict(text, target, chosen_model):
 
 
 
 
25
 
26
- # Initialize the pipeline with the chosen model
27
- model_pipeline = pipeline("text-classification", model=chosen_model)
28
- result = model_pipeline(text)
29
-
30
 
31
- predicted_label = result[0]['label']
32
- predicted_score = result[0]['score']
33
-
34
- non_predicted_label = "Hate Speech" if predicted_label == "Non Hate Speech" else "Non Hate Speech"
35
- non_predicted_score = 1 - predicted_score
36
-
37
  scores_dict = {
38
- predicted_label: predicted_score,
39
- non_predicted_label: non_predicted_score
 
40
  }
41
 
42
  return scores_dict
 
1
  import gradio as gr
2
  import torch
3
+ from keras.models import load_model
4
+ from transformers import TFBertModel, TFXLMRobertaModel
5
+ import numpy as np
6
+ import tensorflow as tf
7
+ from transformers import AutoTokenizer
8
 
9
  app_title = "Portuguese Counter Hate Speech Detection (NFAA)"
10
 
 
15
  For more information about the kNOwHATE project and its initiatives, visit our website [here](https://knowhate.eu) and to explore and use these models visit our Hugging Face page [here](https://huggingface.co/knowhate).
16
  """
17
 
18
+ # 1 0 2
19
  app_examples = [
20
+ ["Essa gente tem é de deixar de ser apaparicada pelo Estado e começar a cumprir os seus deveres como cidadãos",
21
+ "Nepia o que faz com que as pessoas generalizem é o ódio intrínseco que têm contra uma etnia, ng é responsável pela sua xenofobia",
22
+ "knowhate/twt-bertimbau/twt-bb-b16e5-avg767.keras"],
23
+ ["Nem vou comentar o hate e misoginia que tenho visto aqui no tt em relação à Anitta",
24
+ "E xenofobia também. Tugas no seu melhor",
25
+ "knowhate/twt-bertimbau/twt-bb-b16e5-avg767.keras"],
26
+ ["A Festa tá no Climax, chama o zuca pra Dançar.",
27
+ "Já reparaste no contador da luz? Vai trabalhar malandro",
28
+ "knowhate/twt-bertimbau/twt-bb-b16e5-avg767.keras"]
29
  ]
30
 
31
  model_list = [
32
+ "knowhate/twt-bertimbau/twt-bb-b16e5-avg767.keras"
 
33
  ]
34
 
35
  def predict(text, target, chosen_model):
36
+ model1 = load_model(chosen_model, custom_objects={"TFBertModel": TFBertModel})
37
+ checkpoint = "neuralmind/bert-base-portuguese-cased"
38
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint, use_fast=True)
39
+ tokpair = tokenizer(text, target, truncation=True, padding='max_length', return_tensors='np')
40
 
41
+ outp = model1(tokpair)
 
 
 
42
 
43
+ proto_tensor = tf.make_tensor_proto(outp)
44
+ allscores = tf.make_ndarray(proto_tensor)[0]
45
+
 
 
 
46
  scores_dict = {
47
+ 'Neutral': allscores[0],
48
+ 'Counter Speech': allscores[1],
49
+ 'Hate Speech': allscores[2]
50
  }
51
 
52
  return scores_dict