File size: 2,464 Bytes
739086d
 
 
 
 
 
 
 
 
9e8a94b
 
 
 
 
 
 
739086d
9e8a94b
 
 
739086d
9e8a94b
 
 
 
739086d
9e8a94b
739086d
9e8a94b
 
739086d
 
9e8a94b
 
739086d
9e8a94b
 
 
739086d
 
 
9e8a94b
 
739086d
9e8a94b
739086d
 
 
 
 
 
 
 
 
 
 
9e8a94b
739086d
 
 
 
 
 
 
 
 
 
 
 
9e8a94b
739086d
 
 
 
 
 
9e8a94b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# -*- coding: utf-8 -*-
"""
Diabetes Prediction Web App
"""

import numpy as np
import pickle
import streamlit as st

# Dictionary to hold different model names and their corresponding file paths
models = {
    "Logistic Regression": "LogisticRegression_model.pkl",
    "Decision Tree Classifier": "DecisionTreeClassifier_model.pkl",
    "Random Forest Classifier": "RandomForestClassifier_model.pkl",
    "SVC": "SVC_model.pkl"
}

# Load the default model (Logistic Regression in this case)
selected_model = "Logistic Regression"
loaded_model = pickle.load(open(models[selected_model], 'rb'))

# Function for making predictions
def diabetes_prediction(input_data, model):
    # Load the selected model
    loaded_model = pickle.load(open(models[model], 'rb'))
    
    # Convert input_data to numpy array
    input_data_as_numpy_array = np.asarray(input_data)
    input_data_reshaped = input_data_as_numpy_array.reshape(1, -1)
    
    prediction = loaded_model.predict(input_data_reshaped)

    if prediction[0] == 0:
        return 'The person is not diabetic'
    else:
        return 'The person is diabetic'

# Main function for the Streamlit app
def main():
    st.title('Diabetes Prediction Web App')
    
    # Dropdown for model selection
    selected_model = st.selectbox("Select Model", list(models.keys()))
    
    # Input fields for user data
    Pregnancies = st.text_input('Number of Pregnancies')
    Glucose = st.text_input('Glucose Level')
    BloodPressure = st.text_input('Blood Pressure Value')
    SkinThickness = st.text_input('Skin Thickness Value')
    Insulin = st.text_input('Insulin Level')
    BMI = st.text_input('BMI Value')
    DiabetesPedigreeFunction = st.text_input('Diabetes Pedigree Function Value')
    Age = st.text_input('Age of the Person')
    
    diagnosis = ''

    # Prediction button
    if st.button('Diabetes Test Result'):
        try:
            input_data = [
                float(Pregnancies),
                float(Glucose),
                float(BloodPressure),
                float(SkinThickness),
                float(Insulin),
                float(BMI),
                float(DiabetesPedigreeFunction),
                float(Age)
            ]
            diagnosis = diabetes_prediction(input_data, selected_model)
        except ValueError as e:
            diagnosis = "Invalid input. Please enter numeric values for all fields."

    st.success(diagnosis)

if __name__ == '__main__':
    main()