Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Diabetes Prediction Web App
|
4 |
+
"""
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import pickle
|
8 |
+
import streamlit as st
|
9 |
+
|
10 |
+
|
11 |
+
# loading the saved model
|
12 |
+
loaded_model = pickle.load(open('LogisticRegression_model.pkl', 'rb'))
|
13 |
+
|
14 |
+
|
15 |
+
# creating a function for Prediction
|
16 |
+
|
17 |
+
def diabetes_prediction(input_data):
|
18 |
+
|
19 |
+
|
20 |
+
# changing the input_data to numpy array
|
21 |
+
input_data_as_numpy_array = np.asarray(input_data)
|
22 |
+
|
23 |
+
# reshape the array as we are predicting for one instance
|
24 |
+
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)
|
25 |
+
|
26 |
+
prediction = loaded_model.predict(input_data_reshaped)
|
27 |
+
print(prediction)
|
28 |
+
|
29 |
+
if (prediction[0] == 0):
|
30 |
+
return 'The person is not diabetic'
|
31 |
+
else:
|
32 |
+
return 'The person is diabetic'
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
def main():
|
37 |
+
|
38 |
+
# giving a title
|
39 |
+
st.title('Diabetes Prediction Web App')
|
40 |
+
|
41 |
+
|
42 |
+
# getting the input data from the user
|
43 |
+
|
44 |
+
Pregnancies = st.text_input('Number of Pregnancies')
|
45 |
+
Glucose = st.text_input('Glucose Level')
|
46 |
+
BloodPressure = st.text_input('Blood Pressure Value')
|
47 |
+
SkinThickness = st.text_input('Skin Thickness Value')
|
48 |
+
Insulin = st.text_input('Insulin Level')
|
49 |
+
BMI = st.text_input('BMI Value')
|
50 |
+
DiabetesPedigreeFunction = st.text_input('Diabetes Pedigree Function Value')
|
51 |
+
Age = st.text_input('Age of the Person')
|
52 |
+
|
53 |
+
|
54 |
+
# code for Prediction
|
55 |
+
diagnosis = ''
|
56 |
+
|
57 |
+
# creating a button for Prediction
|
58 |
+
|
59 |
+
if st.button('Diabetes Test Result'):
|
60 |
+
try:
|
61 |
+
# Convert input data to floating-point numbers with error handling
|
62 |
+
input_data = [
|
63 |
+
float(Pregnancies),
|
64 |
+
float(Glucose),
|
65 |
+
float(BloodPressure),
|
66 |
+
float(SkinThickness),
|
67 |
+
float(Insulin),
|
68 |
+
float(BMI),
|
69 |
+
float(DiabetesPedigreeFunction),
|
70 |
+
float(Age)
|
71 |
+
]
|
72 |
+
diagnosis = diabetes_prediction(input_data)
|
73 |
+
except ValueError as e:
|
74 |
+
diagnosis = "Invalid input. Please enter numeric values for all fields."
|
75 |
+
|
76 |
+
st.success(diagnosis)
|
77 |
+
|
78 |
+
if __name__ == '__main__':
|
79 |
+
main()
|