Update app.py
Browse files
app.py
CHANGED
@@ -7,40 +7,42 @@ import numpy as np
|
|
7 |
import pickle
|
8 |
import streamlit as st
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
#
|
12 |
-
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
|
19 |
-
|
20 |
-
# changing the input_data to numpy array
|
21 |
input_data_as_numpy_array = np.asarray(input_data)
|
22 |
-
|
23 |
-
|
24 |
-
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)
|
25 |
-
|
26 |
prediction = loaded_model.predict(input_data_reshaped)
|
27 |
-
print(prediction)
|
28 |
|
29 |
-
if
|
30 |
-
|
31 |
else:
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
def main():
|
37 |
-
|
38 |
-
# giving a title
|
39 |
st.title('Diabetes Prediction Web App')
|
40 |
|
|
|
|
|
41 |
|
42 |
-
#
|
43 |
-
|
44 |
Pregnancies = st.text_input('Number of Pregnancies')
|
45 |
Glucose = st.text_input('Glucose Level')
|
46 |
BloodPressure = st.text_input('Blood Pressure Value')
|
@@ -50,15 +52,11 @@ def main():
|
|
50 |
DiabetesPedigreeFunction = st.text_input('Diabetes Pedigree Function Value')
|
51 |
Age = st.text_input('Age of the Person')
|
52 |
|
53 |
-
|
54 |
-
# code for Prediction
|
55 |
diagnosis = ''
|
56 |
|
57 |
-
#
|
58 |
-
|
59 |
if st.button('Diabetes Test Result'):
|
60 |
try:
|
61 |
-
# Convert input data to floating-point numbers with error handling
|
62 |
input_data = [
|
63 |
float(Pregnancies),
|
64 |
float(Glucose),
|
@@ -69,11 +67,11 @@ def main():
|
|
69 |
float(DiabetesPedigreeFunction),
|
70 |
float(Age)
|
71 |
]
|
72 |
-
diagnosis = diabetes_prediction(input_data)
|
73 |
except ValueError as e:
|
74 |
diagnosis = "Invalid input. Please enter numeric values for all fields."
|
75 |
|
76 |
st.success(diagnosis)
|
77 |
|
78 |
if __name__ == '__main__':
|
79 |
-
main()
|
|
|
7 |
import pickle
|
8 |
import streamlit as st
|
9 |
|
10 |
+
# Dictionary to hold different model names and their corresponding file paths
|
11 |
+
models = {
|
12 |
+
"Logistic Regression": "LogisticRegression_model.pkl",
|
13 |
+
"Decision Tree Classifier": "DecisionTreeClassifier_model.pkl",
|
14 |
+
"Random Forest Classifier": "RandomForestClassifier_model.pkl",
|
15 |
+
"SVC": "SVC_model.pkl"
|
16 |
+
}
|
17 |
|
18 |
+
# Load the default model (Logistic Regression in this case)
|
19 |
+
selected_model = "Logistic Regression"
|
20 |
+
loaded_model = pickle.load(open(models[selected_model], 'rb'))
|
21 |
|
22 |
+
# Function for making predictions
|
23 |
+
def diabetes_prediction(input_data, model):
|
24 |
+
# Load the selected model
|
25 |
+
loaded_model = pickle.load(open(models[model], 'rb'))
|
26 |
|
27 |
+
# Convert input_data to numpy array
|
|
|
28 |
input_data_as_numpy_array = np.asarray(input_data)
|
29 |
+
input_data_reshaped = input_data_as_numpy_array.reshape(1, -1)
|
30 |
+
|
|
|
|
|
31 |
prediction = loaded_model.predict(input_data_reshaped)
|
|
|
32 |
|
33 |
+
if prediction[0] == 0:
|
34 |
+
return 'The person is not diabetic'
|
35 |
else:
|
36 |
+
return 'The person is diabetic'
|
37 |
+
|
38 |
+
# Main function for the Streamlit app
|
|
|
39 |
def main():
|
|
|
|
|
40 |
st.title('Diabetes Prediction Web App')
|
41 |
|
42 |
+
# Dropdown for model selection
|
43 |
+
selected_model = st.selectbox("Select Model", list(models.keys()))
|
44 |
|
45 |
+
# Input fields for user data
|
|
|
46 |
Pregnancies = st.text_input('Number of Pregnancies')
|
47 |
Glucose = st.text_input('Glucose Level')
|
48 |
BloodPressure = st.text_input('Blood Pressure Value')
|
|
|
52 |
DiabetesPedigreeFunction = st.text_input('Diabetes Pedigree Function Value')
|
53 |
Age = st.text_input('Age of the Person')
|
54 |
|
|
|
|
|
55 |
diagnosis = ''
|
56 |
|
57 |
+
# Prediction button
|
|
|
58 |
if st.button('Diabetes Test Result'):
|
59 |
try:
|
|
|
60 |
input_data = [
|
61 |
float(Pregnancies),
|
62 |
float(Glucose),
|
|
|
67 |
float(DiabetesPedigreeFunction),
|
68 |
float(Age)
|
69 |
]
|
70 |
+
diagnosis = diabetes_prediction(input_data, selected_model)
|
71 |
except ValueError as e:
|
72 |
diagnosis = "Invalid input. Please enter numeric values for all fields."
|
73 |
|
74 |
st.success(diagnosis)
|
75 |
|
76 |
if __name__ == '__main__':
|
77 |
+
main()
|