File size: 6,449 Bytes
226a7b7
1885732
b45db27
5193ab5
b45db27
 
5193ab5
5850fbf
5193ab5
 
b45db27
5193ab5
 
9443c74
5193ab5
 
afe4685
9443c74
 
5193ab5
 
9443c74
 
56c8d0a
b45db27
afe4685
5193ab5
25b110f
afe4685
25b110f
 
 
 
afe4685
 
25b110f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5193ab5
25b110f
5193ab5
25b110f
5193ab5
25b110f
 
 
b45db27
9443c74
5193ab5
 
25b110f
 
5193ab5
 
 
afe4685
5193ab5
afe4685
5193ab5
afe4685
25b110f
 
 
 
b45db27
 
 
2efc5d6
5193ab5
c9c788f
 
 
 
 
 
f23fc7b
c9c788f
afe4685
5193ab5
 
 
b45db27
 
 
 
2c40df6
2cada81
25b110f
5193ab5
 
 
 
afe4685
 
 
 
 
 
 
 
5193ab5
 
b45db27
 
5193ab5
b45db27
25b110f
 
b45db27
79937ec
b45db27
5193ab5
b45db27
5193ab5
 
b45db27
25b110f
 
b45db27
 
 
7185cf4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
import gradio as gr
import random
import tqdm

# Enable TQDM progress tracking
tqdm.monitor_interval = 0

#HF_TOKEN import
HF_TOKEN = os.getenv("HF_TOKEN")

# Load the diffusion pipeline
pipe = StableDiffusionXLPipeline.from_single_file(
    "https://huggingface.co/kayfahaarukku/AkashicPulse-v1.0/blob/main/AkashicPulse-v1.0-ft-ft.safetensors",
    torch_dtype=torch.float16,
    custom_pipeline="lpw_stable_diffusion_xl",
    use_safetensors=True,
    use_auth_token=HF_TOKEN,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)

# Function to generate an image
@spaces.GPU
def generate_image(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
    try:
        pipe.to('cuda')
        
        if randomize_seed:
            seed = random.randint(0, 99999999)
        if use_defaults:
            prompt = f"{prompt}, masterpiece, best quality"
            negative_prompt = f"lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, signature, watermark, username, blurry, {negative_prompt}"
        generator = torch.manual_seed(seed)
        
        def callback(step, timestep, latents):
            progress(step / num_inference_steps)
            return
        
        width, height = map(int, resolution.split('x'))
        image = pipe(
            prompt, 
            negative_prompt=negative_prompt,
            width=width,
            height=height, 
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            generator=generator,
            callback=callback,
            callback_steps=1
        ).images[0]

        torch.cuda.empty_cache()

        metadata_text = f"{prompt}\nNegative prompt: {negative_prompt}\nSteps: {num_inference_steps}, Sampler: Euler a, Size: {width}x{height}, Seed: {seed}, CFG scale: {guidance_scale}"

        return image, seed, metadata_text
    except Exception as e:
        return None, seed, f"Error during generation: {str(e)}"

# Define Gradio interface
def interface_fn(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
    image, seed, metadata_text = generate_image(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress)
    if image is None:
        return gr.update(value=None), seed, gr.update(value=metadata_text)
    return image, seed, gr.update(value=metadata_text)

def reset_inputs():
    return gr.update(value=''), gr.update(value=''), gr.update(value=True), gr.update(value='832x1216'), gr.update(value=7), gr.update(value=28), gr.update(value=0), gr.update(value=True), gr.update(value='')

with gr.Blocks(title="AkashicPulse Demo", theme="NoCrypt/[email protected]") as demo:
    gr.HTML(
        "<h1>AkashicPulse Demo</h1>"
        "<p>This demo is intended to showcase what the model is capable of and is not intended to be the main generation platform. "
        "Results produced with Diffusers are not the best, and it's highly recommended for you to get the model running inside "
        "Stable Diffusion WebUI or ComfyUI.</p>"
    )
    with gr.Row():
        with gr.Column():
            prompt_input = gr.Textbox(lines=2, placeholder="Enter prompt here", label="Prompt")
            negative_prompt_input = gr.Textbox(lines=2, placeholder="Enter negative prompt here", label="Negative Prompt")
            use_defaults_input = gr.Checkbox(label="Use Default Quality Tags and Negative Prompt", value=True)
            resolution_input = gr.Radio(
                choices=[
                    "1024x1024", "1152x896", "896x1152", "1216x832", "832x1216",
                    "1344x768", "768x1344", "1536x640", "640x1536"
                ],
                label="Resolution",
                value="832x1216"
            )
            guidance_scale_input = gr.Slider(minimum=1, maximum=20, step=0.5, label="Guidance Scale", value=7)
            num_inference_steps_input = gr.Slider(minimum=1, maximum=100, step=1, label="Number of Inference Steps", value=28)
            seed_input = gr.Slider(minimum=0, maximum=999999999, step=1, label="Seed", value=0, interactive=True)
            randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=True)
            generate_button = gr.Button("Generate")
            reset_button = gr.Button("Reset")

        with gr.Column():
            output_image = gr.Image(type="pil", label="Generated Image")
            with gr.Accordion("Parameters", open=False):
                gr.Markdown("This parameter is compatible with Stable Diffusion WebUI's parameter importer.")
                metadata_textbox = gr.Textbox(lines=6, label="Image Parameters", interactive=False, max_lines=6)
            gr.Markdown(
                """
                ### Recommended settings:
                - Sampling: Euler a
                - Steps: 20-30 (sweet spot: 28)
                - CFG: 4-10 (sweet spot: 7)
                - [Not mandatory] On reForge or ComfyUI, have MaHiRo CFG enabled

                ### Recommended prompt formatting:
                - Prompt: [1girl/1boy], [character name], [series], by [artist name], [the rest of the prompt], masterpiece, best quality
                - Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, signature, watermark, username, blurry, [the rest of the negative prompt]
                """
            )

    generate_button.click(
        interface_fn,
        inputs=[
            prompt_input, negative_prompt_input, use_defaults_input, resolution_input, 
            guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input
        ],
        outputs=[output_image, seed_input, metadata_textbox]
    )
    
    reset_button.click(
        reset_inputs,
        inputs=[],
        outputs=[
            prompt_input, negative_prompt_input, use_defaults_input, resolution_input,
            guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input, metadata_textbox
        ]
    )

demo.queue(max_size=20).launch(share=False)