Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -14,7 +14,7 @@ HF_TOKEN = os.getenv("HF_TOKEN")
|
|
14 |
|
15 |
# Load the diffusion pipeline
|
16 |
pipe = StableDiffusionXLPipeline.from_single_file(
|
17 |
-
"https://huggingface.co/kayfahaarukku/AkashicPulse-v1.0/
|
18 |
torch_dtype=torch.float16,
|
19 |
custom_pipeline="lpw_stable_diffusion_xl",
|
20 |
use_safetensors=True,
|
@@ -25,41 +25,46 @@ pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.conf
|
|
25 |
# Function to generate an image
|
26 |
@spaces.GPU # Adjust the duration as needed
|
27 |
def generate_image(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
53 |
|
54 |
-
|
55 |
|
56 |
-
|
57 |
|
58 |
-
|
|
|
|
|
59 |
|
60 |
# Define Gradio interface
|
61 |
def interface_fn(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
|
62 |
image, seed, metadata_text = generate_image(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress)
|
|
|
|
|
63 |
return image, seed, gr.update(value=metadata_text)
|
64 |
|
65 |
def reset_inputs():
|
@@ -68,8 +73,10 @@ def reset_inputs():
|
|
68 |
with gr.Blocks(title="irAsu 1.0 Demo", theme="NoCrypt/[email protected]") as demo:
|
69 |
gr.HTML(
|
70 |
"<h1>irAsu 1.0 Demo</h1>"
|
71 |
-
"This demo is intended to showcase what the model is capable of and is not intended to be the main generation platform.
|
72 |
-
|
|
|
|
|
73 |
with gr.Row():
|
74 |
with gr.Column():
|
75 |
prompt_input = gr.Textbox(lines=2, placeholder="Enter prompt here", label="Prompt")
|
@@ -93,11 +100,7 @@ with gr.Blocks(title="irAsu 1.0 Demo", theme="NoCrypt/[email protected]") as demo:
|
|
93 |
with gr.Column():
|
94 |
output_image = gr.Image(type="pil", label="Generated Image")
|
95 |
with gr.Accordion("Parameters", open=False):
|
96 |
-
gr.Markdown(
|
97 |
-
"""
|
98 |
-
This parameter is compatible with Stable Diffusion WebUI's parameter importer.
|
99 |
-
"""
|
100 |
-
)
|
101 |
metadata_textbox = gr.Textbox(lines=6, label="Image Parameters", interactive=False, max_lines=6)
|
102 |
gr.Markdown(
|
103 |
"""
|
@@ -116,7 +119,8 @@ with gr.Blocks(title="irAsu 1.0 Demo", theme="NoCrypt/[email protected]") as demo:
|
|
116 |
generate_button.click(
|
117 |
interface_fn,
|
118 |
inputs=[
|
119 |
-
prompt_input, negative_prompt_input, use_defaults_input, resolution_input,
|
|
|
120 |
],
|
121 |
outputs=[output_image, seed_input, metadata_textbox]
|
122 |
)
|
@@ -125,7 +129,8 @@ with gr.Blocks(title="irAsu 1.0 Demo", theme="NoCrypt/[email protected]") as demo:
|
|
125 |
reset_inputs,
|
126 |
inputs=[],
|
127 |
outputs=[
|
128 |
-
prompt_input, negative_prompt_input, use_defaults_input, resolution_input,
|
|
|
129 |
]
|
130 |
)
|
131 |
|
|
|
14 |
|
15 |
# Load the diffusion pipeline
|
16 |
pipe = StableDiffusionXLPipeline.from_single_file(
|
17 |
+
"https://huggingface.co/kayfahaarukku/AkashicPulse-v1.0/blob/main/AkashicPulse-v1.0-ft-ft.safetensors", # Fixed URL
|
18 |
torch_dtype=torch.float16,
|
19 |
custom_pipeline="lpw_stable_diffusion_xl",
|
20 |
use_safetensors=True,
|
|
|
25 |
# Function to generate an image
|
26 |
@spaces.GPU # Adjust the duration as needed
|
27 |
def generate_image(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
|
28 |
+
try:
|
29 |
+
pipe.to('cuda') # Move the model to GPU when the function is called
|
30 |
+
|
31 |
+
if randomize_seed:
|
32 |
+
seed = random.randint(0, 99999999)
|
33 |
+
if use_defaults:
|
34 |
+
prompt = f"{prompt}, best quality, amazing quality, very aesthetic"
|
35 |
+
negative_prompt = f"nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract], {negative_prompt}"
|
36 |
+
generator = torch.manual_seed(seed)
|
37 |
+
|
38 |
+
def callback(step, timestep, latents):
|
39 |
+
progress(step / num_inference_steps)
|
40 |
+
return
|
41 |
+
|
42 |
+
width, height = map(int, resolution.split('x'))
|
43 |
+
image = pipe(
|
44 |
+
prompt,
|
45 |
+
negative_prompt=negative_prompt,
|
46 |
+
width=width,
|
47 |
+
height=height,
|
48 |
+
guidance_scale=guidance_scale,
|
49 |
+
num_inference_steps=num_inference_steps,
|
50 |
+
generator=generator,
|
51 |
+
callback=callback,
|
52 |
+
callback_steps=1
|
53 |
+
).images[0]
|
54 |
|
55 |
+
torch.cuda.empty_cache()
|
56 |
|
57 |
+
metadata_text = f"{prompt}\nNegative prompt: {negative_prompt}\nSteps: {num_inference_steps}, Sampler: Euler a, Size: {width}x{height}, Seed: {seed}, CFG scale: {guidance_scale}"
|
58 |
|
59 |
+
return image, seed, metadata_text
|
60 |
+
except Exception as e:
|
61 |
+
return None, seed, f"Error during generation: {str(e)}"
|
62 |
|
63 |
# Define Gradio interface
|
64 |
def interface_fn(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
|
65 |
image, seed, metadata_text = generate_image(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress)
|
66 |
+
if image is None:
|
67 |
+
return gr.update(value=None), seed, gr.update(value=metadata_text)
|
68 |
return image, seed, gr.update(value=metadata_text)
|
69 |
|
70 |
def reset_inputs():
|
|
|
73 |
with gr.Blocks(title="irAsu 1.0 Demo", theme="NoCrypt/[email protected]") as demo:
|
74 |
gr.HTML(
|
75 |
"<h1>irAsu 1.0 Demo</h1>"
|
76 |
+
"<p>This demo is intended to showcase what the model is capable of and is not intended to be the main generation platform. "
|
77 |
+
"Results produced with Diffusers are not the best, and it's highly recommended for you to get the model running inside "
|
78 |
+
"Stable Diffusion WebUI or ComfyUI.</p>"
|
79 |
+
)
|
80 |
with gr.Row():
|
81 |
with gr.Column():
|
82 |
prompt_input = gr.Textbox(lines=2, placeholder="Enter prompt here", label="Prompt")
|
|
|
100 |
with gr.Column():
|
101 |
output_image = gr.Image(type="pil", label="Generated Image")
|
102 |
with gr.Accordion("Parameters", open=False):
|
103 |
+
gr.Markdown("This parameter is compatible with Stable Diffusion WebUI's parameter importer.")
|
|
|
|
|
|
|
|
|
104 |
metadata_textbox = gr.Textbox(lines=6, label="Image Parameters", interactive=False, max_lines=6)
|
105 |
gr.Markdown(
|
106 |
"""
|
|
|
119 |
generate_button.click(
|
120 |
interface_fn,
|
121 |
inputs=[
|
122 |
+
prompt_input, negative_prompt_input, use_defaults_input, resolution_input,
|
123 |
+
guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input
|
124 |
],
|
125 |
outputs=[output_image, seed_input, metadata_textbox]
|
126 |
)
|
|
|
129 |
reset_inputs,
|
130 |
inputs=[],
|
131 |
outputs=[
|
132 |
+
prompt_input, negative_prompt_input, use_defaults_input, resolution_input,
|
133 |
+
guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input, metadata_textbox
|
134 |
]
|
135 |
)
|
136 |
|