Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,206 +1,80 @@
|
|
1 |
import os
|
2 |
import spaces
|
3 |
import torch
|
4 |
-
import
|
5 |
-
import logging
|
6 |
-
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler, StableDiffusionXLImg2ImgPipeline, AutoencoderKL
|
7 |
import gradio as gr
|
8 |
import random
|
9 |
-
|
10 |
-
from PIL import Image, PngImagePlugin
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
logger = logging.getLogger(__name__)
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
MAX_SEED = 2**32 - 1
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
torch.manual_seed(seed)
|
24 |
-
random.seed(seed)
|
25 |
-
return torch.Generator(device='cuda').manual_seed(seed)
|
26 |
-
|
27 |
-
def save_image(image, metadata, output_dir, is_colab=False):
|
28 |
-
os.makedirs(output_dir, exist_ok=True)
|
29 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
30 |
-
filename = f"generated_{timestamp}.png"
|
31 |
-
filepath = os.path.join(output_dir, filename)
|
32 |
-
|
33 |
-
# Save with metadata
|
34 |
-
png_info = PngImagePlugin.PngInfo()
|
35 |
-
png_info.add_text("parameters", json.dumps(metadata))
|
36 |
-
image.save(filepath, "PNG", pnginfo=png_info)
|
37 |
-
|
38 |
-
return filepath
|
39 |
-
|
40 |
-
# Load the diffusion pipeline with optimized VAE
|
41 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(
|
42 |
-
"kayfahaarukku/irAsu-1.0",
|
43 |
torch_dtype=torch.float16,
|
44 |
custom_pipeline="lpw_stable_diffusion_xl",
|
|
|
|
|
45 |
)
|
46 |
-
|
47 |
-
# Load optimized VAE
|
48 |
-
vae = AutoencoderKL.from_pretrained(
|
49 |
-
"madebyollin/sdxl-vae-fp16-fix",
|
50 |
-
torch_dtype=torch.float16,
|
51 |
-
)
|
52 |
-
pipe.vae = vae
|
53 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
54 |
|
55 |
-
# Style presets
|
56 |
-
styles = {
|
57 |
-
"(None)": ("", ""),
|
58 |
-
"Detailed": ("highly detailed, intricate details, ", ""),
|
59 |
-
"Simple": ("simple style, minimalistic, ", "complex, detailed"),
|
60 |
-
"Soft": ("soft lighting, dreamy atmosphere, ", "harsh lighting, sharp contrast"),
|
61 |
-
}
|
62 |
-
|
63 |
-
# Quality presets
|
64 |
-
quality_presets = {
|
65 |
-
"Standard": (
|
66 |
-
"best quality, amazing quality, very aesthetic",
|
67 |
-
"nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts"
|
68 |
-
),
|
69 |
-
"High Detail": (
|
70 |
-
"masterpiece, best quality, amazing quality, very aesthetic, highly detailed",
|
71 |
-
"nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality"
|
72 |
-
),
|
73 |
-
"Basic": (
|
74 |
-
"good quality",
|
75 |
-
"nsfw, lowres, bad quality"
|
76 |
-
)
|
77 |
-
}
|
78 |
-
|
79 |
# Function to generate an image
|
80 |
-
@spaces.GPU
|
81 |
-
def generate_image(
|
82 |
-
|
83 |
-
negative_prompt,
|
84 |
-
use_quality_preset,
|
85 |
-
resolution,
|
86 |
-
guidance_scale,
|
87 |
-
num_inference_steps,
|
88 |
-
seed,
|
89 |
-
randomize_seed,
|
90 |
-
style_preset="(None)",
|
91 |
-
use_upscaler=False,
|
92 |
-
upscaler_strength=0.55,
|
93 |
-
upscale_by=1.5,
|
94 |
-
progress=gr.Progress()
|
95 |
-
):
|
96 |
-
if randomize_seed:
|
97 |
-
seed = random.randint(0, MAX_SEED)
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
quality_prompt, quality_negative = quality_presets["Standard"]
|
106 |
-
prompt = f"{prompt}, {quality_prompt}"
|
107 |
-
negative_prompt = f"{negative_prompt}, {quality_negative}"
|
108 |
|
109 |
-
|
|
|
|
|
110 |
|
111 |
width, height = map(int, resolution.split('x'))
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
negative_prompt=negative_prompt,
|
130 |
-
width=width,
|
131 |
-
height=height,
|
132 |
-
guidance_scale=guidance_scale,
|
133 |
-
num_inference_steps=num_inference_steps,
|
134 |
-
generator=generator,
|
135 |
-
output_type="latent"
|
136 |
-
).images
|
137 |
-
|
138 |
-
# Setup img2img pipeline for upscaling
|
139 |
-
upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
|
140 |
-
|
141 |
-
# Calculate new dimensions
|
142 |
-
new_width = int(width * upscale_by)
|
143 |
-
new_height = int(height * upscale_by)
|
144 |
-
|
145 |
-
# Upscale
|
146 |
-
image = upscaler_pipe(
|
147 |
-
prompt=prompt,
|
148 |
-
negative_prompt=negative_prompt,
|
149 |
-
image=latents,
|
150 |
-
strength=upscaler_strength,
|
151 |
-
guidance_scale=guidance_scale,
|
152 |
-
num_inference_steps=num_inference_steps,
|
153 |
-
generator=generator
|
154 |
-
).images[0]
|
155 |
-
|
156 |
-
metadata["upscaler"] = {
|
157 |
-
"strength": upscaler_strength,
|
158 |
-
"scale_factor": upscale_by,
|
159 |
-
"final_resolution": f"{new_width}x{new_height}"
|
160 |
-
}
|
161 |
-
else:
|
162 |
-
image = pipe(
|
163 |
-
prompt,
|
164 |
-
negative_prompt=negative_prompt,
|
165 |
-
width=width,
|
166 |
-
height=height,
|
167 |
-
guidance_scale=guidance_scale,
|
168 |
-
num_inference_steps=num_inference_steps,
|
169 |
-
generator=generator,
|
170 |
-
callback=lambda step, timestep, latents: progress(step / num_inference_steps)
|
171 |
-
).images[0]
|
172 |
-
|
173 |
-
# Save image with metadata
|
174 |
-
image_path = save_image(image, metadata, OUTPUT_DIR)
|
175 |
-
logger.info(f"Image saved as {image_path} with metadata")
|
176 |
-
|
177 |
-
return image, seed, json.dumps(metadata, indent=2)
|
178 |
-
|
179 |
-
except Exception as e:
|
180 |
-
logger.exception(f"An error occurred: {e}")
|
181 |
-
raise
|
182 |
-
finally:
|
183 |
-
if use_upscaler:
|
184 |
-
del upscaler_pipe
|
185 |
-
torch.cuda.empty_cache()
|
186 |
|
187 |
# Define Gradio interface
|
188 |
-
|
189 |
-
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
with gr.Row():
|
192 |
with gr.Column():
|
193 |
prompt_input = gr.Textbox(lines=2, placeholder="Enter prompt here", label="Prompt")
|
194 |
negative_prompt_input = gr.Textbox(lines=2, placeholder="Enter negative prompt here", label="Negative Prompt")
|
195 |
-
|
196 |
-
with gr.Accordion("Style & Quality", open=True):
|
197 |
-
style_selector = gr.Radio(
|
198 |
-
choices=list(styles.keys()),
|
199 |
-
value="(None)",
|
200 |
-
label="Style Preset"
|
201 |
-
)
|
202 |
-
use_quality_preset = gr.Checkbox(label="Use Quality Preset", value=True)
|
203 |
-
|
204 |
resolution_input = gr.Radio(
|
205 |
choices=[
|
206 |
"1024x1024", "1152x896", "896x1152", "1216x832", "832x1216",
|
@@ -209,65 +83,49 @@ with gr.Blocks(title="irAsu 1.0 Enhanced Demo", theme="NoCrypt/[email protected]") as d
|
|
209 |
label="Resolution",
|
210 |
value="832x1216"
|
211 |
)
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
seed_input = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, label="Seed", value=0)
|
217 |
-
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=True)
|
218 |
-
|
219 |
-
use_upscaler_input = gr.Checkbox(label="Use Upscaler", value=False)
|
220 |
-
with gr.Group(visible=False) as upscaler_settings:
|
221 |
-
upscaler_strength_input = gr.Slider(minimum=0, maximum=1, step=0.05, label="Upscaler Strength", value=0.55)
|
222 |
-
upscale_by_input = gr.Slider(minimum=1, maximum=1.5, step=0.1, label="Upscale Factor", value=1.5)
|
223 |
-
|
224 |
generate_button = gr.Button("Generate")
|
225 |
reset_button = gr.Button("Reset")
|
226 |
|
227 |
with gr.Column():
|
228 |
output_image = gr.Image(type="pil", label="Generated Image")
|
229 |
with gr.Accordion("Parameters", open=False):
|
230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
|
|
|
|
238 |
|
239 |
-
# Generate button click event
|
240 |
generate_button.click(
|
241 |
-
|
242 |
inputs=[
|
243 |
-
prompt_input,
|
244 |
-
negative_prompt_input,
|
245 |
-
use_quality_preset,
|
246 |
-
resolution_input,
|
247 |
-
guidance_scale_input,
|
248 |
-
num_inference_steps_input,
|
249 |
-
seed_input,
|
250 |
-
randomize_seed_input,
|
251 |
-
style_selector,
|
252 |
-
use_upscaler_input,
|
253 |
-
upscaler_strength_input,
|
254 |
-
upscale_by_input
|
255 |
],
|
256 |
outputs=[output_image, seed_input, metadata_textbox]
|
257 |
)
|
258 |
-
|
259 |
-
# Reset button click event
|
260 |
reset_button.click(
|
261 |
-
|
262 |
-
|
263 |
-
"(None)", False, 0.55, 1.5, None
|
264 |
-
),
|
265 |
outputs=[
|
266 |
-
prompt_input, negative_prompt_input,
|
267 |
-
resolution_input, guidance_scale_input, num_inference_steps_input,
|
268 |
-
seed_input, randomize_seed_input, style_selector,
|
269 |
-
use_upscaler_input, upscaler_strength_input, upscale_by_input,
|
270 |
-
metadata_textbox
|
271 |
]
|
272 |
)
|
273 |
|
|
|
1 |
import os
|
2 |
import spaces
|
3 |
import torch
|
4 |
+
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
|
|
|
|
5 |
import gradio as gr
|
6 |
import random
|
7 |
+
import tqdm
|
|
|
8 |
|
9 |
+
# Enable TQDM progress tracking
|
10 |
+
tqdm.monitor_interval = 0
|
|
|
11 |
|
12 |
+
#HF_TOKEN import
|
13 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
14 |
|
15 |
+
# Load the diffusion pipeline
|
16 |
+
pipe = StableDiffusionXLPipeline.from_single_file(
|
17 |
+
"https://huggingface.co/kayfahaarukku/AkashicPulse-v1.0/resolve/main/AkashicPulse-v1.0-ft-ft.safetensors",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
torch_dtype=torch.float16,
|
19 |
custom_pipeline="lpw_stable_diffusion_xl",
|
20 |
+
use_safetensors=True,
|
21 |
+
use_auth_token=HF_TOKEN,
|
22 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
# Function to generate an image
|
26 |
+
@spaces.GPU # Adjust the duration as needed
|
27 |
+
def generate_image(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
|
28 |
+
pipe.to('cuda') # Move the model to GPU when the function is called
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
if randomize_seed:
|
31 |
+
seed = random.randint(0, 99999999)
|
32 |
+
if use_defaults:
|
33 |
+
prompt = f"{prompt}, best quality, amazing quality, very aesthetic"
|
34 |
+
negative_prompt = f"nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract], {negative_prompt}"
|
35 |
+
generator = torch.manual_seed(seed)
|
|
|
|
|
|
|
36 |
|
37 |
+
def callback(step, timestep, latents):
|
38 |
+
progress(step / num_inference_steps)
|
39 |
+
return
|
40 |
|
41 |
width, height = map(int, resolution.split('x'))
|
42 |
+
image = pipe(
|
43 |
+
prompt,
|
44 |
+
negative_prompt=negative_prompt,
|
45 |
+
width=width,
|
46 |
+
height=height,
|
47 |
+
guidance_scale=guidance_scale,
|
48 |
+
num_inference_steps=num_inference_steps,
|
49 |
+
generator=generator,
|
50 |
+
callback=callback,
|
51 |
+
callback_steps=1
|
52 |
+
).images[0]
|
53 |
+
|
54 |
+
torch.cuda.empty_cache()
|
55 |
+
|
56 |
+
metadata_text = f"{prompt}\nNegative prompt: {negative_prompt}\nSteps: {num_inference_steps}, Sampler: Euler a, Size: {width}x{height}, Seed: {seed}, CFG scale: {guidance_scale}"
|
57 |
+
|
58 |
+
return image, seed, metadata_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
# Define Gradio interface
|
61 |
+
def interface_fn(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
|
62 |
+
image, seed, metadata_text = generate_image(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress)
|
63 |
+
return image, seed, gr.update(value=metadata_text)
|
64 |
+
|
65 |
+
def reset_inputs():
|
66 |
+
return gr.update(value=''), gr.update(value=''), gr.update(value=True), gr.update(value='832x1216'), gr.update(value=4), gr.update(value=28), gr.update(value=0), gr.update(value=True), gr.update(value='')
|
67 |
+
|
68 |
+
with gr.Blocks(title="irAsu 1.0 Demo", theme="NoCrypt/[email protected]") as demo:
|
69 |
+
gr.HTML(
|
70 |
+
"<h1>irAsu 1.0 Demo</h1>"
|
71 |
+
"This demo is intended to showcase what the model is capable of and is not intended to be the main generation platform. Results produced with Diffusers are not the best, and it's highly recommended for you to get the model running inside Stable Diffusion WebUI or ComfyUI."
|
72 |
+
)
|
73 |
with gr.Row():
|
74 |
with gr.Column():
|
75 |
prompt_input = gr.Textbox(lines=2, placeholder="Enter prompt here", label="Prompt")
|
76 |
negative_prompt_input = gr.Textbox(lines=2, placeholder="Enter negative prompt here", label="Negative Prompt")
|
77 |
+
use_defaults_input = gr.Checkbox(label="Use Default Quality Tags and Negative Prompt", value=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
resolution_input = gr.Radio(
|
79 |
choices=[
|
80 |
"1024x1024", "1152x896", "896x1152", "1216x832", "832x1216",
|
|
|
83 |
label="Resolution",
|
84 |
value="832x1216"
|
85 |
)
|
86 |
+
guidance_scale_input = gr.Slider(minimum=1, maximum=20, step=0.5, label="Guidance Scale", value=4)
|
87 |
+
num_inference_steps_input = gr.Slider(minimum=1, maximum=100, step=1, label="Number of Inference Steps", value=28)
|
88 |
+
seed_input = gr.Slider(minimum=0, maximum=999999999, step=1, label="Seed", value=0, interactive=True)
|
89 |
+
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
generate_button = gr.Button("Generate")
|
91 |
reset_button = gr.Button("Reset")
|
92 |
|
93 |
with gr.Column():
|
94 |
output_image = gr.Image(type="pil", label="Generated Image")
|
95 |
with gr.Accordion("Parameters", open=False):
|
96 |
+
gr.Markdown(
|
97 |
+
"""
|
98 |
+
This parameter is compatible with Stable Diffusion WebUI's parameter importer.
|
99 |
+
"""
|
100 |
+
)
|
101 |
+
metadata_textbox = gr.Textbox(lines=6, label="Image Parameters", interactive=False, max_lines=6)
|
102 |
+
gr.Markdown(
|
103 |
+
"""
|
104 |
+
### Recommended prompt formatting:
|
105 |
+
`1girl/1boy, character name, from what series, everything else in any order, best quality, amazing quality, very aesthetic,`
|
106 |
|
107 |
+
**PS:** `best quality, amazing quality, very aesthetic,` is automatically added when "Use Default Quality Tags and Negative Prompt" is enabled
|
108 |
+
|
109 |
+
### Recommended settings:
|
110 |
+
- Steps: 25-30
|
111 |
+
- CFG: 3.5-5
|
112 |
+
- Sweet spot: 28 steps, 4 CFG
|
113 |
+
"""
|
114 |
+
)
|
115 |
|
|
|
116 |
generate_button.click(
|
117 |
+
interface_fn,
|
118 |
inputs=[
|
119 |
+
prompt_input, negative_prompt_input, use_defaults_input, resolution_input, guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
],
|
121 |
outputs=[output_image, seed_input, metadata_textbox]
|
122 |
)
|
123 |
+
|
|
|
124 |
reset_button.click(
|
125 |
+
reset_inputs,
|
126 |
+
inputs=[],
|
|
|
|
|
127 |
outputs=[
|
128 |
+
prompt_input, negative_prompt_input, use_defaults_input, resolution_input, guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input, metadata_textbox
|
|
|
|
|
|
|
|
|
129 |
]
|
130 |
)
|
131 |
|