File size: 6,464 Bytes
226a7b7
1885732
b45db27
5193ab5
b45db27
 
5193ab5
5850fbf
5193ab5
 
b45db27
5193ab5
 
9443c74
5193ab5
 
25b110f
9443c74
 
5193ab5
 
9443c74
 
56c8d0a
b45db27
5193ab5
 
25b110f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5193ab5
25b110f
5193ab5
25b110f
5193ab5
25b110f
 
 
b45db27
9443c74
5193ab5
 
25b110f
 
5193ab5
 
 
 
 
 
 
 
25b110f
 
 
 
b45db27
 
 
2efc5d6
5193ab5
c9c788f
 
 
 
 
 
f23fc7b
c9c788f
5193ab5
 
 
 
b45db27
 
 
 
2c40df6
2cada81
25b110f
5193ab5
 
 
 
 
87d81cd
5193ab5
 
 
 
 
 
 
 
b45db27
 
5193ab5
b45db27
25b110f
 
b45db27
79937ec
b45db27
5193ab5
b45db27
5193ab5
 
b45db27
25b110f
 
b45db27
 
 
7185cf4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
import gradio as gr
import random
import tqdm

# Enable TQDM progress tracking
tqdm.monitor_interval = 0

#HF_TOKEN import
HF_TOKEN = os.getenv("HF_TOKEN")

# Load the diffusion pipeline
pipe = StableDiffusionXLPipeline.from_single_file(
    "https://huggingface.co/kayfahaarukku/AkashicPulse-v1.0/blob/main/AkashicPulse-v1.0-ft-ft.safetensors",  # Fixed URL
    torch_dtype=torch.float16,
    custom_pipeline="lpw_stable_diffusion_xl",
    use_safetensors=True,
    use_auth_token=HF_TOKEN,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)

# Function to generate an image
@spaces.GPU  # Adjust the duration as needed
def generate_image(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
    try:
        pipe.to('cuda')  # Move the model to GPU when the function is called
        
        if randomize_seed:
            seed = random.randint(0, 99999999)
        if use_defaults:
            prompt = f"{prompt}, best quality, amazing quality, very aesthetic"
            negative_prompt = f"nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract], {negative_prompt}"
        generator = torch.manual_seed(seed)
        
        def callback(step, timestep, latents):
            progress(step / num_inference_steps)
            return
        
        width, height = map(int, resolution.split('x'))
        image = pipe(
            prompt, 
            negative_prompt=negative_prompt,
            width=width,
            height=height, 
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            generator=generator,
            callback=callback,
            callback_steps=1
        ).images[0]

        torch.cuda.empty_cache()

        metadata_text = f"{prompt}\nNegative prompt: {negative_prompt}\nSteps: {num_inference_steps}, Sampler: Euler a, Size: {width}x{height}, Seed: {seed}, CFG scale: {guidance_scale}"

        return image, seed, metadata_text
    except Exception as e:
        return None, seed, f"Error during generation: {str(e)}"

# Define Gradio interface
def interface_fn(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
    image, seed, metadata_text = generate_image(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress)
    if image is None:
        return gr.update(value=None), seed, gr.update(value=metadata_text)
    return image, seed, gr.update(value=metadata_text)

def reset_inputs():
    return gr.update(value=''), gr.update(value=''), gr.update(value=True), gr.update(value='832x1216'), gr.update(value=4), gr.update(value=28), gr.update(value=0), gr.update(value=True), gr.update(value='')

with gr.Blocks(title="irAsu 1.0 Demo", theme="NoCrypt/[email protected]") as demo:
    gr.HTML(
        "<h1>irAsu 1.0 Demo</h1>"
        "<p>This demo is intended to showcase what the model is capable of and is not intended to be the main generation platform. "
        "Results produced with Diffusers are not the best, and it's highly recommended for you to get the model running inside "
        "Stable Diffusion WebUI or ComfyUI.</p>"
    )
    with gr.Row():
        with gr.Column():
            prompt_input = gr.Textbox(lines=2, placeholder="Enter prompt here", label="Prompt")
            negative_prompt_input = gr.Textbox(lines=2, placeholder="Enter negative prompt here", label="Negative Prompt")
            use_defaults_input = gr.Checkbox(label="Use Default Quality Tags and Negative Prompt", value=True)
            resolution_input = gr.Radio(
                choices=[
                    "1024x1024", "1152x896", "896x1152", "1216x832", "832x1216",
                    "1344x768", "768x1344", "1536x640", "640x1536"
                ],
                label="Resolution",
                value="832x1216"
            )
            guidance_scale_input = gr.Slider(minimum=1, maximum=20, step=0.5, label="Guidance Scale", value=4)
            num_inference_steps_input = gr.Slider(minimum=1, maximum=100, step=1, label="Number of Inference Steps", value=28)
            seed_input = gr.Slider(minimum=0, maximum=999999999, step=1, label="Seed", value=0, interactive=True)
            randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=True)
            generate_button = gr.Button("Generate")
            reset_button = gr.Button("Reset")

        with gr.Column():
            output_image = gr.Image(type="pil", label="Generated Image")
            with gr.Accordion("Parameters", open=False):
                gr.Markdown("This parameter is compatible with Stable Diffusion WebUI's parameter importer.")
                metadata_textbox = gr.Textbox(lines=6, label="Image Parameters", interactive=False, max_lines=6)
            gr.Markdown(
                """
                ### Recommended prompt formatting:
                `1girl/1boy, character name, from what series, everything else in any order, best quality, amazing quality, very aesthetic,`

                **PS:** `best quality, amazing quality, very aesthetic,` is automatically added when "Use Default Quality Tags and Negative Prompt" is enabled

                ### Recommended settings:
                - Steps: 25-30
                - CFG: 3.5-5
                - Sweet spot: 28 steps, 4 CFG
                """
            )

    generate_button.click(
        interface_fn,
        inputs=[
            prompt_input, negative_prompt_input, use_defaults_input, resolution_input, 
            guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input
        ],
        outputs=[output_image, seed_input, metadata_textbox]
    )
    
    reset_button.click(
        reset_inputs,
        inputs=[],
        outputs=[
            prompt_input, negative_prompt_input, use_defaults_input, resolution_input,
            guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input, metadata_textbox
        ]
    )

demo.queue(max_size=20).launch(share=False)