Spaces:
Runtime error
Runtime error
File size: 6,464 Bytes
226a7b7 1885732 b45db27 5193ab5 b45db27 5193ab5 5850fbf 5193ab5 b45db27 5193ab5 9443c74 5193ab5 25b110f 9443c74 5193ab5 9443c74 56c8d0a b45db27 5193ab5 25b110f 5193ab5 25b110f 5193ab5 25b110f 5193ab5 25b110f b45db27 9443c74 5193ab5 25b110f 5193ab5 25b110f b45db27 2efc5d6 5193ab5 c9c788f f23fc7b c9c788f 5193ab5 b45db27 2c40df6 2cada81 25b110f 5193ab5 87d81cd 5193ab5 b45db27 5193ab5 b45db27 25b110f b45db27 79937ec b45db27 5193ab5 b45db27 5193ab5 b45db27 25b110f b45db27 7185cf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import os
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
import gradio as gr
import random
import tqdm
# Enable TQDM progress tracking
tqdm.monitor_interval = 0
#HF_TOKEN import
HF_TOKEN = os.getenv("HF_TOKEN")
# Load the diffusion pipeline
pipe = StableDiffusionXLPipeline.from_single_file(
"https://huggingface.co/kayfahaarukku/AkashicPulse-v1.0/blob/main/AkashicPulse-v1.0-ft-ft.safetensors", # Fixed URL
torch_dtype=torch.float16,
custom_pipeline="lpw_stable_diffusion_xl",
use_safetensors=True,
use_auth_token=HF_TOKEN,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# Function to generate an image
@spaces.GPU # Adjust the duration as needed
def generate_image(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
try:
pipe.to('cuda') # Move the model to GPU when the function is called
if randomize_seed:
seed = random.randint(0, 99999999)
if use_defaults:
prompt = f"{prompt}, best quality, amazing quality, very aesthetic"
negative_prompt = f"nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract], {negative_prompt}"
generator = torch.manual_seed(seed)
def callback(step, timestep, latents):
progress(step / num_inference_steps)
return
width, height = map(int, resolution.split('x'))
image = pipe(
prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
callback=callback,
callback_steps=1
).images[0]
torch.cuda.empty_cache()
metadata_text = f"{prompt}\nNegative prompt: {negative_prompt}\nSteps: {num_inference_steps}, Sampler: Euler a, Size: {width}x{height}, Seed: {seed}, CFG scale: {guidance_scale}"
return image, seed, metadata_text
except Exception as e:
return None, seed, f"Error during generation: {str(e)}"
# Define Gradio interface
def interface_fn(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
image, seed, metadata_text = generate_image(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress)
if image is None:
return gr.update(value=None), seed, gr.update(value=metadata_text)
return image, seed, gr.update(value=metadata_text)
def reset_inputs():
return gr.update(value=''), gr.update(value=''), gr.update(value=True), gr.update(value='832x1216'), gr.update(value=4), gr.update(value=28), gr.update(value=0), gr.update(value=True), gr.update(value='')
with gr.Blocks(title="irAsu 1.0 Demo", theme="NoCrypt/[email protected]") as demo:
gr.HTML(
"<h1>irAsu 1.0 Demo</h1>"
"<p>This demo is intended to showcase what the model is capable of and is not intended to be the main generation platform. "
"Results produced with Diffusers are not the best, and it's highly recommended for you to get the model running inside "
"Stable Diffusion WebUI or ComfyUI.</p>"
)
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(lines=2, placeholder="Enter prompt here", label="Prompt")
negative_prompt_input = gr.Textbox(lines=2, placeholder="Enter negative prompt here", label="Negative Prompt")
use_defaults_input = gr.Checkbox(label="Use Default Quality Tags and Negative Prompt", value=True)
resolution_input = gr.Radio(
choices=[
"1024x1024", "1152x896", "896x1152", "1216x832", "832x1216",
"1344x768", "768x1344", "1536x640", "640x1536"
],
label="Resolution",
value="832x1216"
)
guidance_scale_input = gr.Slider(minimum=1, maximum=20, step=0.5, label="Guidance Scale", value=4)
num_inference_steps_input = gr.Slider(minimum=1, maximum=100, step=1, label="Number of Inference Steps", value=28)
seed_input = gr.Slider(minimum=0, maximum=999999999, step=1, label="Seed", value=0, interactive=True)
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=True)
generate_button = gr.Button("Generate")
reset_button = gr.Button("Reset")
with gr.Column():
output_image = gr.Image(type="pil", label="Generated Image")
with gr.Accordion("Parameters", open=False):
gr.Markdown("This parameter is compatible with Stable Diffusion WebUI's parameter importer.")
metadata_textbox = gr.Textbox(lines=6, label="Image Parameters", interactive=False, max_lines=6)
gr.Markdown(
"""
### Recommended prompt formatting:
`1girl/1boy, character name, from what series, everything else in any order, best quality, amazing quality, very aesthetic,`
**PS:** `best quality, amazing quality, very aesthetic,` is automatically added when "Use Default Quality Tags and Negative Prompt" is enabled
### Recommended settings:
- Steps: 25-30
- CFG: 3.5-5
- Sweet spot: 28 steps, 4 CFG
"""
)
generate_button.click(
interface_fn,
inputs=[
prompt_input, negative_prompt_input, use_defaults_input, resolution_input,
guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input
],
outputs=[output_image, seed_input, metadata_textbox]
)
reset_button.click(
reset_inputs,
inputs=[],
outputs=[
prompt_input, negative_prompt_input, use_defaults_input, resolution_input,
guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input, metadata_textbox
]
)
demo.queue(max_size=20).launch(share=False) |