|
from fastapi import FastAPI |
|
from pydantic import BaseModel |
|
from huggingface_hub import InferenceClient |
|
import uvicorn |
|
import prompt_style |
|
import os |
|
|
|
|
|
model_id = "failspy/Meta-Llama-3-8B-Instruct-abliterated-v3" |
|
client = InferenceClient(token=os.getenv('HF_TOKEN'), model=model_id) |
|
|
|
class Item(BaseModel): |
|
prompt: str |
|
history: list |
|
system_prompt: str |
|
token:str |
|
temperature: float = 0.6 |
|
max_new_tokens: int = 1024 |
|
top_p: float = 0.95 |
|
repetition_penalty: float = 1.0 |
|
seed : int = 42 |
|
|
|
app = FastAPI() |
|
|
|
def format_prompt(item: Item): |
|
messages = [ |
|
{"role": "system", "content": prompt_style.data}, |
|
] |
|
for it in item.history: |
|
messages.append[{"role" : "user", "content": it[0]}] |
|
messages.append[{"role" : "assistant", "content": it[1]}] |
|
return messages |
|
|
|
def generate(item: Item): |
|
temperature = float(item.temperature) |
|
if temperature < 1e-2: |
|
temperature = 1e-2 |
|
top_p = float(item.top_p) |
|
|
|
generate_kwargs = dict( |
|
temperature=temperature, |
|
max_new_tokens=item.max_new_tokens, |
|
top_p=top_p, |
|
repetition_penalty=item.repetition_penalty, |
|
do_sample=True, |
|
seed=item.seed, |
|
) |
|
|
|
formatted_prompt = format_prompt(item) |
|
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) |
|
output = "" |
|
|
|
for response in stream: |
|
output += response.token.text |
|
return output |
|
|
|
@app.post("/generate/") |
|
async def generate_text(item: Item): |
|
ans = generate(item) |
|
return {"response": ans} |
|
|
|
|
|
@app.get("/") |
|
def read_root(): |
|
return {"Hello": "World!"} |