File size: 1,659 Bytes
bee5263 f6819c7 bee5263 3fbd422 a58b418 3fbd422 bee5263 f6819c7 09b869e bee5263 ecadc7d dbcfd8e 29fbbe7 dbcfd8e bee5263 3fbd422 bee5263 ee2886a bee5263 3fbd422 f6819c7 3fbd422 f6819c7 bee5263 fff1df0 f6819c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
from fastapi import FastAPI
from pydantic import BaseModel
from huggingface_hub import InferenceClient
import uvicorn
import prompt_style
import os
model_id = "failspy/Meta-Llama-3-8B-Instruct-abliterated-v3"
client = InferenceClient(token=os.getenv('HF_TOKEN'), model=model_id)
class Item(BaseModel):
prompt: str
history: list
system_prompt: str
token:str
temperature: float = 0.6
max_new_tokens: int = 1024
top_p: float = 0.95
repetition_penalty: float = 1.0
seed : int = 42
app = FastAPI()
def format_prompt(item: Item):
messages = [
{"role": "system", "content": prompt_style.data},
]
for it in item.history:
messages.append[{"role" : "user", "content": it[0]}]
messages.append[{"role" : "assistant", "content": it[1]}]
return messages
def generate(item: Item):
temperature = float(item.temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(item.top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=item.max_new_tokens,
top_p=top_p,
repetition_penalty=item.repetition_penalty,
do_sample=True,
seed=item.seed,
)
formatted_prompt = format_prompt(item)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
return output
@app.post("/generate/")
async def generate_text(item: Item):
ans = generate(item)
return {"response": ans}
@app.get("/")
def read_root():
return {"Hello": "World!"} |