from fastapi import FastAPI from pydantic import BaseModel from huggingface_hub import InferenceClient import uvicorn import prompt_style import os model_id = "failspy/Meta-Llama-3-8B-Instruct-abliterated-v3" client = InferenceClient(token=os.getenv('HF_TOKEN'), model=model_id) class Item(BaseModel): prompt: str history: list system_prompt: str token:str temperature: float = 0.6 max_new_tokens: int = 1024 top_p: float = 0.95 repetition_penalty: float = 1.0 seed : int = 42 app = FastAPI() def format_prompt(item: Item): messages = [ {"role": "system", "content": prompt_style.data}, ] for it in item.history: messages.append[{"role" : "user", "content": it[0]}] messages.append[{"role" : "assistant", "content": it[1]}] return messages def generate(item: Item): temperature = float(item.temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(item.top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=item.max_new_tokens, top_p=top_p, repetition_penalty=item.repetition_penalty, do_sample=True, seed=item.seed, ) formatted_prompt = format_prompt(item) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text return output @app.post("/generate/") async def generate_text(item: Item): ans = generate(item) return {"response": ans} @app.get("/") def read_root(): return {"Hello": "World!"}