File size: 4,464 Bytes
4c0593e 09b2769 d521dce 61ba593 d521dce 378c937 61ba593 8414736 1dc0a7f d521dce 09b2769 1dc0a7f 752ce9b d521dce 8cfce12 234fe59 1dc0a7f d521dce 1dc0a7f 61ba593 4c0593e 61ba593 1dc0a7f 09b2769 1dc0a7f d521dce 8414736 d521dce bb8566e 1dc0a7f 752ce9b 4c0593e 8cfce12 4c0593e 1dc0a7f 752ce9b 1dc0a7f 09b2769 1dc0a7f 8414736 09b2769 1dc0a7f 09b2769 752ce9b 1dc0a7f 09b2769 752ce9b 1dc0a7f 4c0593e 1dc0a7f 752ce9b 4c0593e 752ce9b 8414736 4c0593e d521dce 8414736 d521dce 1dc0a7f bb8566e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import gradio as gr
from processing import run
import json
from huggingface_hub import login
import os
# LOG INTO HUGGING FACE
hf_token = os.getenv("HF_Token")
login(hf_token)
# def hf_login():
# hf_token = os.getenv("HF_Token")
# if hf_token is None:
# with open("credentials.json", "r") as f:
# hf_token = json.load(f)["token"]
# login(token=hf_token, add_to_git_credential=True)
# hf_login()
# GENERAL OPTIONS FOR MODELS AND DATASETS
MODEL_OPTIONS = ["openai/whisper-tiny.en", "facebook/s2t-medium-librispeech-asr", "facebook/wav2vec2-base-960h","openai/whisper-large-v2"]
DATASET_OPTIONS = ["Common Voice", "Librispeech ASR clean", "Librispeech ASR other", "OWN Recoding/Sample"]
# HELPER FUNCTIONS
def get_card(selected_model:str)->str:
with open("cards.txt", "r") as f:
cards = f.read()
cards = cards.split("@@")
for card in cards:
if "ID: "+selected_model in card:
return card
return "Unknown Model"
def is_own(selected_option):
if selected_option == "OWN Recoding/Sample":
return gr.update(visible=True), gr.update(visible=True)
else:
return gr.update(visible=False), gr.update(visible=False)
def make_visible():
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
# THE ACTUAL APP
with gr.Blocks() as demo:
gr.Markdown('# <p style="text-align: center;">ASR Model Comparison 💬</p>')
gr.Markdown("""
""")
gr.Markdown("""### Welcome to ASR Model Comparison Hub! 🎉
Hey there, and welcome to an app designed just for developers like you, who are passionate about pushing the boundaries of Automatic Speech Recognition (ASR) technology!
Here, you can easily compare different ASR models by selecting a dataset and choosing two models from the dropdown to see how they stack up against each other. If you're feeling creative, go ahead and select 'OWN' as your dataset option to upload your own audio file or record something new right in the app. Don’t forget to provide a transcription, and the app will handle the rest!
ASR Model Comparison Hub uses the Word Error Rate (WER) ⬇️ (the lower the better) metric to give you a clear picture of each model's performance. And hey, don't miss out on checking the **Amazing Leaderboard** where you can see how a wide range of models have been evaluated—[Check it out here](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard).
Happy experimenting and comparing! 🚀""")
with gr.Row():
with gr.Column(scale=1):
pass
with gr.Column(scale=5):
data_subset = gr.Radio(
value="Common Voice",
choices=DATASET_OPTIONS,
label="Data subset / Own Sample",
)
own_audio = gr.Audio(sources=['microphone'], visible=False)
own_transcription = gr.TextArea(lines=2, visible=False)
data_subset.change(is_own, inputs=[data_subset], outputs=[own_audio, own_transcription])
with gr.Column(scale=1):
pass
with gr.Row():
with gr.Column(scale=1):
model_1 = gr.Dropdown(
choices=MODEL_OPTIONS,
label="Select Model"
)
model_1_card = gr.Markdown("")
with gr.Column(scale=1):
model_2 = gr.Dropdown(
choices=MODEL_OPTIONS,
label="Select Model"
)
model_2_card = gr.Markdown("")
model_1.change(get_card, inputs=model_1, outputs=model_1_card)
model_2.change(get_card, inputs=model_2, outputs=model_2_card)
eval_btn = gr.Button(
value="Evaluate",
variant="primary",
size="sm")
results_title = gr.Markdown('## <p style="text-align: center;">Results</p>', visible=False)
results_md = gr.Markdown("")
results_plot = gr.Plot(show_label=False, visible=False)
results_df = gr.DataFrame(
visible=False,
row_count=(5, "dynamic"), # Allow dynamic rows
interactive=False, # Allow users to interact with the DataFrame
wrap=True, # Ensure text wraps to multiple lines
)
eval_btn.click(make_visible, outputs=[results_plot, results_df, results_title])
eval_btn.click(run, [data_subset, model_1, model_2, own_audio, own_transcription], [results_md, results_plot, results_df], show_progress=False)
demo.launch(debug=True) |