j-tobias
commited on
Commit
·
61ba593
1
Parent(s):
378c937
added Model Cards
Browse files
app.py
CHANGED
@@ -1,12 +1,17 @@
|
|
1 |
import gradio as gr # needs to be installed
|
2 |
-
import os
|
3 |
from dataset import Dataset
|
4 |
from model import Model
|
5 |
-
from huggingface_hub import login
|
6 |
from utils import compute_wer
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
hf_token = os.getenv("HF_Token")
|
9 |
-
login(
|
|
|
10 |
|
11 |
dataset = Dataset()
|
12 |
models = Model()
|
@@ -33,14 +38,15 @@ def eval(data_subset:str, model_1:str, model_2:str)->str:
|
|
33 |
|
34 |
def get_card(selected_model:str)->str:
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
44 |
|
45 |
def is_own(data_subset:str):
|
46 |
if data_subset == "own":
|
|
|
1 |
import gradio as gr # needs to be installed
|
|
|
2 |
from dataset import Dataset
|
3 |
from model import Model
|
|
|
4 |
from utils import compute_wer
|
5 |
|
6 |
+
# from utils import hf_login
|
7 |
+
# hf_login()
|
8 |
+
|
9 |
+
from huggingface_hub import login
|
10 |
+
import os
|
11 |
+
|
12 |
hf_token = os.getenv("HF_Token")
|
13 |
+
login(hf_token)
|
14 |
+
|
15 |
|
16 |
dataset = Dataset()
|
17 |
models = Model()
|
|
|
38 |
|
39 |
def get_card(selected_model:str)->str:
|
40 |
|
41 |
+
with open("cards.txt", "r") as f:
|
42 |
+
cards = f.read()
|
43 |
+
|
44 |
+
cards = cards.split("@@")
|
45 |
+
for card in cards:
|
46 |
+
if "ID: "+selected_model in card:
|
47 |
+
return card
|
48 |
+
|
49 |
+
return "Unknown Model"
|
50 |
|
51 |
def is_own(data_subset:str):
|
52 |
if data_subset == "own":
|
cards.txt
CHANGED
@@ -1,5 +1,18 @@
|
|
1 |
#### Whisper Tiny (EN)
|
2 |
-
|
3 |
-
-
|
|
|
|
|
|
|
|
|
|
|
4 |
@@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
@@
|
|
|
1 |
#### Whisper Tiny (EN)
|
2 |
+
- ID: openai/whisper-tiny.en
|
3 |
+
- Hugging Face: [model](https://huggingface.co/openai/whisper-tiny.en)
|
4 |
+
- Creator: openai
|
5 |
+
- Finetuned: No
|
6 |
+
- Model Size: 39 M Parameters
|
7 |
+
- Model Paper: [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf)
|
8 |
+
- Training Data: The models are trained on 680,000 hours of audio and the corresponding transcripts collected from the internet. 65% of this data (or 438,000 hours) represents English-language audio and matched English transcripts, roughly 18% (or 126,000 hours) represents non-English audio and English transcripts, while the final 17% (or 117,000 hours) represents non-English audio and the corresponding transcript. This non-English data represents 98 different languages.
|
9 |
@@
|
10 |
+
#### S2T Medium ASR
|
11 |
+
- ID: facebook/s2t-medium-librispeech-asr
|
12 |
+
- Hugging Face: [model](https://huggingface.co/facebook/s2t-medium-librispeech-asr)
|
13 |
+
- Creator: facebook
|
14 |
+
- Finetuned: No
|
15 |
+
- Model Size: 71.2 M Parameters
|
16 |
+
- Model Paper: [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171)
|
17 |
+
- Training Data: [LibriSpeech ASR Corpus](https://www.openslr.org/12)
|
18 |
@@
|
model.py
CHANGED
@@ -97,8 +97,11 @@ class Model:
|
|
97 |
predictions = []
|
98 |
references = []
|
99 |
|
|
|
|
|
|
|
100 |
for sample in result:
|
101 |
predictions.append(sample['transcription'])
|
102 |
-
references.append(sample[
|
103 |
|
104 |
return references, predictions
|
|
|
97 |
predictions = []
|
98 |
references = []
|
99 |
|
100 |
+
DaTaSeT._check_text()
|
101 |
+
text_column = DaTaSeT.text
|
102 |
+
|
103 |
for sample in result:
|
104 |
predictions.append(sample['transcription'])
|
105 |
+
references.append(sample[text_column])
|
106 |
|
107 |
return references, predictions
|
utils.py
CHANGED
@@ -1,15 +1,15 @@
|
|
1 |
-
|
2 |
-
|
3 |
import evaluate
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
|
14 |
def data(dataset):
|
15 |
for i, item in enumerate(dataset):
|
|
|
1 |
+
from huggingface_hub import login
|
2 |
+
import json
|
3 |
import evaluate
|
4 |
+
import os
|
5 |
|
6 |
+
def hf_login():
|
7 |
+
hf_token = os.getenv("HF_Token")
|
8 |
+
print(hf_token)
|
9 |
+
if hf_token is None:
|
10 |
+
with open("credentials.json", "r") as f:
|
11 |
+
hf_token = json.load(f)["token"]
|
12 |
+
login(token=hf_token, add_to_git_credential=True)
|
13 |
|
14 |
def data(dataset):
|
15 |
for i, item in enumerate(dataset):
|