j-tobias
commited on
Commit
·
4c0593e
1
Parent(s):
61ba593
Results visualisation
Browse files
app.py
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
-
import gradio as gr
|
2 |
from dataset import Dataset
|
3 |
from model import Model
|
4 |
from utils import compute_wer
|
|
|
|
|
5 |
|
6 |
# from utils import hf_login
|
7 |
# hf_login()
|
@@ -12,11 +14,9 @@ import os
|
|
12 |
hf_token = os.getenv("HF_Token")
|
13 |
login(hf_token)
|
14 |
|
15 |
-
|
16 |
dataset = Dataset()
|
17 |
models = Model()
|
18 |
|
19 |
-
|
20 |
def run_tests (dataset_choice:str, model:str):
|
21 |
|
22 |
MoDeL = Model()
|
@@ -28,21 +28,46 @@ def run_tests (dataset_choice:str, model:str):
|
|
28 |
wer = compute_wer(references=references, predictions=predictions)
|
29 |
return wer
|
30 |
|
31 |
-
|
32 |
def eval(data_subset:str, model_1:str, model_2:str)->str:
|
33 |
|
34 |
wer_result_1 = run_tests(data_subset, model_1)
|
35 |
wer_result_2 = run_tests(data_subset, model_2)
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
def get_card(selected_model:str)->str:
|
40 |
|
|
|
41 |
with open("cards.txt", "r") as f:
|
42 |
cards = f.read()
|
|
|
|
|
43 |
|
44 |
cards = cards.split("@@")
|
45 |
for card in cards:
|
|
|
46 |
if "ID: "+selected_model in card:
|
47 |
return card
|
48 |
|
@@ -60,9 +85,21 @@ def is_own(data_subset:str):
|
|
60 |
with gr.Blocks() as demo:
|
61 |
|
62 |
|
63 |
-
gr.Markdown('# <p style="text-align: center;">
|
64 |
gr.Markdown("-------")
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
with gr.Row():
|
68 |
with gr.Column(scale=1):
|
@@ -79,7 +116,6 @@ with gr.Blocks() as demo:
|
|
79 |
with gr.Row():
|
80 |
own_audio = gr.Audio(sources=['microphone'],streaming=False,visible=False)
|
81 |
own_transcription = gr.TextArea(lines=2, visible=False)
|
82 |
-
|
83 |
data_subset.change(is_own, inputs=[data_subset], outputs=[own_audio, own_transcription])
|
84 |
|
85 |
|
@@ -99,39 +135,19 @@ with gr.Blocks() as demo:
|
|
99 |
)
|
100 |
model_2_card = gr.Markdown("")
|
101 |
|
102 |
-
# with gr.Column(scale=1):
|
103 |
-
# model_3 = gr.Dropdown(
|
104 |
-
# choices=models.get_options(),
|
105 |
-
# label="Select Model"
|
106 |
-
# )
|
107 |
-
# model_3_card = gr.Markdown("")
|
108 |
|
109 |
model_1.change(get_card, inputs=model_1, outputs=model_1_card)
|
110 |
model_2.change(get_card, inputs=model_2, outputs=model_2_card)
|
111 |
-
|
112 |
|
113 |
eval_btn = gr.Button(
|
114 |
value="Evaluate",
|
115 |
variant="primary",
|
116 |
-
size="sm"
|
117 |
-
)
|
118 |
-
|
119 |
-
|
120 |
|
121 |
gr.Markdown('## <p style="text-align: center;">Results</p>')
|
122 |
-
gr.Markdown("
|
123 |
-
|
124 |
-
|
125 |
-
with gr.Row():
|
126 |
-
|
127 |
-
with gr.Column(scale=1):
|
128 |
-
results_model_1 = gr.Markdown("")
|
129 |
-
|
130 |
-
with gr.Column(scale=1):
|
131 |
-
results_model_2 = gr.Markdown("")
|
132 |
-
|
133 |
-
eval_btn.click(eval, [data_subset, model_1, model_2], [results_model_1, results_model_2])
|
134 |
-
|
135 |
-
|
136 |
|
137 |
demo.launch(debug=True)
|
|
|
1 |
+
import gradio as gr
|
2 |
from dataset import Dataset
|
3 |
from model import Model
|
4 |
from utils import compute_wer
|
5 |
+
import plotly.graph_objs as go
|
6 |
+
|
7 |
|
8 |
# from utils import hf_login
|
9 |
# hf_login()
|
|
|
14 |
hf_token = os.getenv("HF_Token")
|
15 |
login(hf_token)
|
16 |
|
|
|
17 |
dataset = Dataset()
|
18 |
models = Model()
|
19 |
|
|
|
20 |
def run_tests (dataset_choice:str, model:str):
|
21 |
|
22 |
MoDeL = Model()
|
|
|
28 |
wer = compute_wer(references=references, predictions=predictions)
|
29 |
return wer
|
30 |
|
|
|
31 |
def eval(data_subset:str, model_1:str, model_2:str)->str:
|
32 |
|
33 |
wer_result_1 = run_tests(data_subset, model_1)
|
34 |
wer_result_2 = run_tests(data_subset, model_2)
|
35 |
|
36 |
+
results_md = f"""#### {model_1}
|
37 |
+
- WER Score: {wer_result_1}
|
38 |
+
|
39 |
+
#### {model_2}
|
40 |
+
- WER Score: {wer_result_2}"""
|
41 |
+
|
42 |
+
# Create the bar plot
|
43 |
+
fig = go.Figure(
|
44 |
+
data=[
|
45 |
+
go.Bar(x=[f"{model_1}"], y=[wer_result_1]),
|
46 |
+
go.Bar(x=[f"{model_2}"], y=[wer_result_2]),
|
47 |
+
]
|
48 |
+
)
|
49 |
+
|
50 |
+
# Update the layout for better visualization
|
51 |
+
fig.update_layout(
|
52 |
+
title="Comparison of Two Models",
|
53 |
+
xaxis_title="Models",
|
54 |
+
yaxis_title="Value",
|
55 |
+
barmode="group",
|
56 |
+
)
|
57 |
+
|
58 |
+
return results_md, fig
|
59 |
|
60 |
def get_card(selected_model:str)->str:
|
61 |
|
62 |
+
print("Selected Model for Card: ", selected_model)
|
63 |
with open("cards.txt", "r") as f:
|
64 |
cards = f.read()
|
65 |
+
|
66 |
+
print(cards)
|
67 |
|
68 |
cards = cards.split("@@")
|
69 |
for card in cards:
|
70 |
+
print("CARD: ", card)
|
71 |
if "ID: "+selected_model in card:
|
72 |
return card
|
73 |
|
|
|
85 |
with gr.Blocks() as demo:
|
86 |
|
87 |
|
88 |
+
gr.Markdown('# <p style="text-align: center;">ASR Model Comparison 💬</p>')
|
89 |
gr.Markdown("-------")
|
90 |
+
|
91 |
+
|
92 |
+
gr.Markdown("""### Welcome to ASR Model Comparison Hub! 🎉
|
93 |
+
|
94 |
+
Hey there, and welcome to an app designed just for developers like you, who are passionate about pushing the boundaries of Automatic Speech Recognition (ASR) technology!
|
95 |
+
|
96 |
+
Here, you can easily compare different ASR models by selecting a dataset and choosing two models from the dropdown to see how they stack up against each other. If you're feeling creative, go ahead and select 'OWN' as your dataset option to upload your own audio file or record something new right in the app. Don’t forget to provide a transcription, and the app will handle the rest!
|
97 |
+
|
98 |
+
ASR Model Comparison Hub uses the Word Error Rate (WER) ⬇️ (the lower the better) metric to give you a clear picture of each model's performance. And hey, don't miss out on checking the **Amazing Leaderboard** where you can see how a wide range of models have been evaluated—[Check it out here](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard).
|
99 |
+
|
100 |
+
Happy experimenting and comparing! 🚀""")
|
101 |
+
|
102 |
+
|
103 |
|
104 |
with gr.Row():
|
105 |
with gr.Column(scale=1):
|
|
|
116 |
with gr.Row():
|
117 |
own_audio = gr.Audio(sources=['microphone'],streaming=False,visible=False)
|
118 |
own_transcription = gr.TextArea(lines=2, visible=False)
|
|
|
119 |
data_subset.change(is_own, inputs=[data_subset], outputs=[own_audio, own_transcription])
|
120 |
|
121 |
|
|
|
135 |
)
|
136 |
model_2_card = gr.Markdown("")
|
137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
model_1.change(get_card, inputs=model_1, outputs=model_1_card)
|
140 |
model_2.change(get_card, inputs=model_2, outputs=model_2_card)
|
141 |
+
|
142 |
|
143 |
eval_btn = gr.Button(
|
144 |
value="Evaluate",
|
145 |
variant="primary",
|
146 |
+
size="sm")
|
|
|
|
|
|
|
147 |
|
148 |
gr.Markdown('## <p style="text-align: center;">Results</p>')
|
149 |
+
results_md = gr.Markdown("")
|
150 |
+
results_plot = gr.Plot(show_label=False)
|
151 |
+
eval_btn.click(eval, [data_subset, model_1, model_2], [results_md, results_plot])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
demo.launch(debug=True)
|