Spaces:
Running
Running
File size: 5,488 Bytes
c88be80 07f61a7 acd33cc 07f61a7 c88be80 f19a916 4ac0a4f 13340c5 4ac0a4f f19a916 acd33cc 8da3e7b b2c192d 8da3e7b b2c192d c88be80 b2c192d 8da3e7b b2c192d f19a916 8da3e7b 3fe116d 831cf0c 3b0ca05 3fe116d c852adf 07f61a7 918690a 85c4c94 c852adf 85c4c94 c852adf e8e96f0 c852adf e8e96f0 c852adf e8e96f0 c852adf 85c4c94 e8e96f0 85c4c94 e8e96f0 660b4ca 647160b 85c4c94 c852adf 93b8d2b 831cf0c 93b8d2b f19a916 7db667a c1f8b2c 4b32201 c1f8b2c b791bf5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import gradio as gr
import requests
import datadog_api_client
import json
import io
import base64
from PIL import Image
def face_crop(image, face_rect):
x1 = face_rect.get('x1')
y1 = face_rect.get('y1')
x2 = face_rect.get('x2')
y2 = face_rect.get('y2')
width = x2 - x1 + 1
height = y2 - y1 + 1
if x1 < 0:
x1 = 0
if y1 < 0:
y1 = 0
if x2 >= image.width:
x2 = image.width - 1
if y2 >= image.height:
y2 = image.height - 1
face_image = image.crop((x1, y1, x2, y2))
face_image_ratio = face_image.width / float(face_image.height)
resized_w = int(face_image_ratio * 150)
resized_h = 150
face_image = face_image.resize((int(resized_w), int(resized_h)))
return face_image
def pil_image_to_base64(image, format="PNG"):
"""
Converts a PIL.Image object to a Base64-encoded string.
:param image: PIL.Image object
:param format: Format to save the image, e.g., "PNG", "JPEG"
:return: Base64-encoded string
"""
# Save the image to a BytesIO buffer
buffer = io.BytesIO()
image.save(buffer, format=format)
buffer.seek(0) # Rewind the buffer
# Convert the buffer's contents to a Base64 string
base64_string = base64.b64encode(buffer.getvalue()).decode('utf-8')
return base64_string
def compare_face(frame1, frame2):
url = "http://127.0.0.1:8080/compare_face"
files = {'file1': open(frame1, 'rb'), 'file2': open(frame2, 'rb')}
file1 = None
file2 = None
try:
file1 = open(frame1, 'rb')
except:
return "Failed to open image1"
try:
file2 = open(frame2, 'rb')
except:
return "Failed to open image2"
url = "http://127.0.0.1:8080/compare_face"
files = {'file1': file1, 'file2': file2}
result = requests.post(url=url, files=files)
if result.ok:
json_result = result.json()
if json_result.get("resultCode") != "Ok":
return json_result.get("resultCode")
try:
image1 = Image.open(frame1)
image2 = Image.open(frame2)
html = ""
faces1 = json_result.get("faces1", {})
faces2 = json_result.get("faces2", {})
results = json_result.get("results", {})
for result in results:
similarity = result.get('similarity')
face1_idx = result.get('face1')
face2_idx = result.get('face2')
face_image1 = face_crop(image1, faces1[face1_idx])
face_value1 = ('<img src="data:image/png;base64,{base64_image}" style="width: 100px; height: auto; object-fit: contain;"/>').format(base64_image=pil_image_to_base64(face_image1, format="PNG"))
face_image2 = face_crop(image2, faces2[face2_idx])
face_value2 = ('<img src="data:image/png;base64,{base64_image}" style="width: 100px; height: auto; object-fit: contain;"/>').format(base64_image=pil_image_to_base64(face_image2, format="PNG"))
match_icon = '<svg fill="red" width="19" height="32" viewBox="0 0 19 32"><path d="M0 13.92V10.2H19V13.92H0ZM0 21.64V17.92H19V21.64H0Z"></path><path d="M14.08 0H18.08L5.08 32H1.08L14.08 0Z"></path></svg>'
if similarity > 0.67:
match_icon = '<svg fill="green" width="19" height="32" viewBox="0 0 19 32"><path d="M0 13.9202V10.2002H19V13.9202H0ZM0 21.6402V17.9202H19V21.6402H0Z"></path></svg>'
item_value = ('<div style="align-items: center; gap: 10px; display: flex; flex-direction: column;">'
'<div style="display: flex; align-items: center; gap: 20px;">'
'{face_value1}'
'{match_icon}'
'{face_value2}'
'</div>'
'<div style="text-align: center; margin-top: 10px;">'
'Similarity: {similarity}'
'</div>'
'</div>'
).format(face_value1=face_value1, face_value2=face_value2, match_icon=match_icon, similarity=f"{similarity:.2f}")
html += item_value
html += '<hr style="border: 1px solid #C0C0C0; margin: 10px 0;"/>'
return html
except:
return "Processing failed"
else:
return result.text
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=7):
with gr.Row():
with gr.Column():
image_input1 = gr.Image(type='filepath')
gr.Examples(['face_examples/1.jpg', 'face_examples/3.jpg', 'face_examples/7.jpg', 'face_examples/9.jpg'],
inputs=image_input1)
with gr.Column():
image_input2 = gr.Image(type='filepath')
gr.Examples(['face_examples/2.jpg', 'face_examples/4.jpg', 'face_examples/8.jpg', 'face_examples/10.jpg'],
inputs=image_input2)
face_recog_button = gr.Button("Compare Face", variant="primary", size="lg")
with gr.Column(scale=3):
recog_html_output = gr.HTML()
face_recog_button.click(compare_face, inputs=[image_input1, image_input2], outputs=recog_html_output)
demo.launch(server_name="0.0.0.0", server_port=7860) |