File size: 5,488 Bytes
c88be80
 
 
07f61a7
 
acd33cc
07f61a7
c88be80
 
f19a916
4ac0a4f
 
 
 
 
13340c5
4ac0a4f
 
 
 
 
 
 
 
 
 
 
 
f19a916
 
 
 
 
 
 
acd33cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8da3e7b
 
 
 
 
 
b2c192d
8da3e7b
b2c192d
 
c88be80
b2c192d
8da3e7b
b2c192d
 
f19a916
8da3e7b
 
 
3fe116d
831cf0c
 
3b0ca05
 
 
3fe116d
c852adf
 
 
07f61a7
918690a
85c4c94
 
 
c852adf
85c4c94
 
 
 
c852adf
e8e96f0
 
c852adf
e8e96f0
 
c852adf
e8e96f0
 
 
c852adf
85c4c94
e8e96f0
 
 
 
 
85c4c94
 
 
 
e8e96f0
660b4ca
647160b
85c4c94
c852adf
 
 
93b8d2b
831cf0c
93b8d2b
f19a916
7db667a
c1f8b2c
 
 
 
 
 
 
 
 
 
 
4b32201
c1f8b2c
 
 
 
b791bf5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import gradio as gr
import requests
import datadog_api_client
import json
import io
import base64

from PIL import Image

def face_crop(image, face_rect):
    x1 = face_rect.get('x1')
    y1 = face_rect.get('y1')
    x2 = face_rect.get('x2')
    y2 = face_rect.get('y2')
    width = x2 - x1 + 1
    height = y2 - y1 + 1


    if x1 < 0:
        x1 = 0
    if y1 < 0:
        y1 = 0
    if x2 >= image.width:
        x2 = image.width - 1
    if y2 >= image.height:
        y2 = image.height - 1

    face_image = image.crop((x1, y1, x2, y2))
    face_image_ratio = face_image.width / float(face_image.height)
    resized_w = int(face_image_ratio * 150)
    resized_h = 150

    face_image = face_image.resize((int(resized_w), int(resized_h)))
    return face_image

def pil_image_to_base64(image, format="PNG"):
    """
    Converts a PIL.Image object to a Base64-encoded string.
    :param image: PIL.Image object
    :param format: Format to save the image, e.g., "PNG", "JPEG"
    :return: Base64-encoded string
    """
    # Save the image to a BytesIO buffer
    buffer = io.BytesIO()
    image.save(buffer, format=format)
    buffer.seek(0)  # Rewind the buffer

    # Convert the buffer's contents to a Base64 string
    base64_string = base64.b64encode(buffer.getvalue()).decode('utf-8')
    return base64_string
    
def compare_face(frame1, frame2):
    url = "http://127.0.0.1:8080/compare_face"
    files = {'file1': open(frame1, 'rb'), 'file2': open(frame2, 'rb')}

    file1 = None
    file2 = None
    try:
        file1 = open(frame1, 'rb')
    except:
        return "Failed to open image1"

    try:
        file2 = open(frame2, 'rb')
    except:
        return "Failed to open image2"
    
    url = "http://127.0.0.1:8080/compare_face"
    files = {'file1': file1, 'file2': file2}
    result = requests.post(url=url, files=files)

    if result.ok:
        json_result = result.json()
       
        if json_result.get("resultCode") != "Ok":
            return json_result.get("resultCode")
        
        try:
            image1 = Image.open(frame1)
            image2 = Image.open(frame2)

            html = ""
            faces1 = json_result.get("faces1", {})           
            faces2 = json_result.get("faces2", {})
            results = json_result.get("results", {})
    
            for result in results:
                similarity = result.get('similarity')
                face1_idx = result.get('face1')
                face2_idx = result.get('face2')
    
                face_image1 = face_crop(image1, faces1[face1_idx])
                face_value1 = ('<img src="data:image/png;base64,{base64_image}" style="width: 100px; height: auto; object-fit: contain;"/>').format(base64_image=pil_image_to_base64(face_image1, format="PNG"))
    
                face_image2 = face_crop(image2, faces2[face2_idx])
                face_value2 = ('<img src="data:image/png;base64,{base64_image}" style="width: 100px; height: auto; object-fit: contain;"/>').format(base64_image=pil_image_to_base64(face_image2, format="PNG"))
    
                match_icon = '<svg fill="red" width="19" height="32" viewBox="0 0 19 32"><path d="M0 13.92V10.2H19V13.92H0ZM0 21.64V17.92H19V21.64H0Z"></path><path d="M14.08 0H18.08L5.08 32H1.08L14.08 0Z"></path></svg>'
                if similarity > 0.67:
                    match_icon = '<svg fill="green" width="19" height="32" viewBox="0 0 19 32"><path d="M0 13.9202V10.2002H19V13.9202H0ZM0 21.6402V17.9202H19V21.6402H0Z"></path></svg>'
    
                item_value = ('<div style="align-items: center; gap: 10px; display: flex; flex-direction: column;">'
                                '<div style="display: flex; align-items: center; gap: 20px;">'
                                '{face_value1}'
                                '{match_icon}'
                                '{face_value2}'
                                '</div>'
                                '<div style="text-align: center; margin-top: 10px;">'
                                'Similarity: {similarity}'
                                '</div>'
                                '</div>'
                ).format(face_value1=face_value1, face_value2=face_value2, match_icon=match_icon, similarity=f"{similarity:.2f}")

                html += item_value
                html += '<hr style="border: 1px solid #C0C0C0; margin: 10px 0;"/>'
    
            return html
        except:
            return "Processing failed"
    else:
        return result.text
        
with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column(scale=7):
            with gr.Row():
                with gr.Column():
                    image_input1 = gr.Image(type='filepath')
                    gr.Examples(['face_examples/1.jpg', 'face_examples/3.jpg', 'face_examples/7.jpg', 'face_examples/9.jpg'], 
                                inputs=image_input1)
                with gr.Column():
                    image_input2 = gr.Image(type='filepath')
                    gr.Examples(['face_examples/2.jpg', 'face_examples/4.jpg', 'face_examples/8.jpg', 'face_examples/10.jpg'], 
                                inputs=image_input2)
            face_recog_button = gr.Button("Compare Face", variant="primary", size="lg")
        with gr.Column(scale=3):
            recog_html_output = gr.HTML()

    face_recog_button.click(compare_face, inputs=[image_input1, image_input2], outputs=recog_html_output)

demo.launch(server_name="0.0.0.0", server_port=7860)