Spaces:
Running
Running
Update demo.py
Browse files
demo.py
CHANGED
@@ -4,22 +4,24 @@ import datadog_api_client
|
|
4 |
from PIL import Image
|
5 |
|
6 |
def face_crop(image, face_rect):
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
if
|
16 |
-
|
17 |
-
if
|
18 |
-
|
19 |
-
if
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
23 |
face_image_ratio = face_image.width / float(face_image.height)
|
24 |
resized_w = int(face_image_ratio * 150)
|
25 |
resized_h = 150
|
@@ -94,13 +96,12 @@ with gr.Blocks(css=".gradio-container {background-color: #F4E5E0}") as demo:
|
|
94 |
with gr.Row():
|
95 |
with gr.Column():
|
96 |
image_input1 = gr.Image(type='pil')
|
97 |
-
gr.Examples(['
|
98 |
inputs=image_input1)
|
99 |
with gr.Column():
|
100 |
image_input2 = gr.Image(type='pil')
|
101 |
-
gr.Examples(['
|
102 |
inputs=image_input2)
|
103 |
-
verifyThreshold = gr.Slider(minimum=0, maximum=1, value=0.67, label="Verify Threshold")
|
104 |
face_recog_button = gr.Button("Face Recognition")
|
105 |
with gr.Column(scale=3):
|
106 |
recog_html_output = gr.HTML()
|
|
|
4 |
from PIL import Image
|
5 |
|
6 |
def face_crop(image, face_rect):
|
7 |
+
x1 = face_rect.get('x1')
|
8 |
+
y1 = face_rect.get('y1')
|
9 |
+
x2 = face_rect.get('x2')
|
10 |
+
y2 = face_rect.get('y2')
|
11 |
+
width = x2 - x1 + 1
|
12 |
+
height = y2 - y2 + 1
|
13 |
+
|
14 |
+
|
15 |
+
if x1 < 0:
|
16 |
+
x1 = 0
|
17 |
+
if y1 < 0:
|
18 |
+
y1 = 0
|
19 |
+
if x2 >= image.width:
|
20 |
+
x2 = image.width - 1
|
21 |
+
if y2 >= image.height:
|
22 |
+
y2 = image.height - 1
|
23 |
+
|
24 |
+
face_image = image.crop((x1, y1, x2, y2))
|
25 |
face_image_ratio = face_image.width / float(face_image.height)
|
26 |
resized_w = int(face_image_ratio * 150)
|
27 |
resized_h = 150
|
|
|
96 |
with gr.Row():
|
97 |
with gr.Column():
|
98 |
image_input1 = gr.Image(type='pil')
|
99 |
+
gr.Examples(['face_examples/1.jpg', 'face_examples/3.jpg', 'face_examples/7.jpg', 'face_examples/9.jpg'],
|
100 |
inputs=image_input1)
|
101 |
with gr.Column():
|
102 |
image_input2 = gr.Image(type='pil')
|
103 |
+
gr.Examples(['face_examples/2.jpg', 'face_examples/4.jpg', 'face_examples/8.jpg', 'face_examples/10.jpg'],
|
104 |
inputs=image_input2)
|
|
|
105 |
face_recog_button = gr.Button("Face Recognition")
|
106 |
with gr.Column(scale=3):
|
107 |
recog_html_output = gr.HTML()
|