justin2341 commited on
Commit
4ac0a4f
·
verified ·
1 Parent(s): 15b0ec5

Update demo.py

Browse files
Files changed (1) hide show
  1. demo.py +20 -19
demo.py CHANGED
@@ -4,22 +4,24 @@ import datadog_api_client
4
  from PIL import Image
5
 
6
  def face_crop(image, face_rect):
7
- x = face_rect.get('x')
8
- y = face_rect.get('y')
9
- width = face_rect.get('width')
10
- height = face_rect.get('height')
11
-
12
-
13
- if x < 0:
14
- x = 0
15
- if y < 0:
16
- y = 0
17
- if x + width >= image.width:
18
- width = image.width - x
19
- if y + height >= image.height:
20
- height = image.height - y
21
-
22
- face_image = image.crop((x, y, x + width - 1, y + height - 1))
 
 
23
  face_image_ratio = face_image.width / float(face_image.height)
24
  resized_w = int(face_image_ratio * 150)
25
  resized_h = 150
@@ -94,13 +96,12 @@ with gr.Blocks(css=".gradio-container {background-color: #F4E5E0}") as demo:
94
  with gr.Row():
95
  with gr.Column():
96
  image_input1 = gr.Image(type='pil')
97
- gr.Examples(['examples/1.webp', 'examples/2.webp', 'examples/3.webp', 'examples/4.webp'],
98
  inputs=image_input1)
99
  with gr.Column():
100
  image_input2 = gr.Image(type='pil')
101
- gr.Examples(['examples/5.webp', 'examples/6.webp', 'examples/7.webp', 'examples/8.webp'],
102
  inputs=image_input2)
103
- verifyThreshold = gr.Slider(minimum=0, maximum=1, value=0.67, label="Verify Threshold")
104
  face_recog_button = gr.Button("Face Recognition")
105
  with gr.Column(scale=3):
106
  recog_html_output = gr.HTML()
 
4
  from PIL import Image
5
 
6
  def face_crop(image, face_rect):
7
+ x1 = face_rect.get('x1')
8
+ y1 = face_rect.get('y1')
9
+ x2 = face_rect.get('x2')
10
+ y2 = face_rect.get('y2')
11
+ width = x2 - x1 + 1
12
+ height = y2 - y2 + 1
13
+
14
+
15
+ if x1 < 0:
16
+ x1 = 0
17
+ if y1 < 0:
18
+ y1 = 0
19
+ if x2 >= image.width:
20
+ x2 = image.width - 1
21
+ if y2 >= image.height:
22
+ y2 = image.height - 1
23
+
24
+ face_image = image.crop((x1, y1, x2, y2))
25
  face_image_ratio = face_image.width / float(face_image.height)
26
  resized_w = int(face_image_ratio * 150)
27
  resized_h = 150
 
96
  with gr.Row():
97
  with gr.Column():
98
  image_input1 = gr.Image(type='pil')
99
+ gr.Examples(['face_examples/1.jpg', 'face_examples/3.jpg', 'face_examples/7.jpg', 'face_examples/9.jpg'],
100
  inputs=image_input1)
101
  with gr.Column():
102
  image_input2 = gr.Image(type='pil')
103
+ gr.Examples(['face_examples/2.jpg', 'face_examples/4.jpg', 'face_examples/8.jpg', 'face_examples/10.jpg'],
104
  inputs=image_input2)
 
105
  face_recog_button = gr.Button("Face Recognition")
106
  with gr.Column(scale=3):
107
  recog_html_output = gr.HTML()