justin2341 commited on
Commit
f19a916
·
verified ·
1 Parent(s): 8878d9b

Update demo.py

Browse files
Files changed (1) hide show
  1. demo.py +98 -113
demo.py CHANGED
@@ -3,123 +3,108 @@ import requests
3
  import datadog_api_client
4
  from PIL import Image
5
 
6
- def compare_face(frame1, frame2):
7
- url = "http://127.0.0.1:8080/compare_face"
8
- files = {'file1': open(frame1, 'rb'), 'file2': open(frame2, 'rb')}
9
-
10
- r = requests.post(url=url, files=files)
11
-
12
- html = None
13
- faces = None
14
-
15
- compare_result = r.json().get('compare_result')
16
- compare_similarity = r.json().get('compare_similarity')
17
-
18
- html = ("<table>"
19
- "<tr>"
20
- "<th>Compare Result</th>"
21
- "<th>Value</th>"
22
- "</tr>"
23
- "<tr>"
24
- "<td>Result</td>"
25
- "<td>{compare_result}</td>"
26
- "</tr>"
27
- "<tr>"
28
- "<td>Similarity</td>"
29
- "<td>{compare_similarity}</td>"
30
- "</tr>"
31
- "</table>".format(compare_result=compare_result, compare_similarity=compare_similarity))
32
-
33
  try:
34
- image1 = Image.open(frame1)
35
- image2 = Image.open(frame2)
36
-
37
- face1 = None
38
- face2 = None
39
-
40
- if r.json().get('face1') is not None:
41
- face = r.json().get('face1')
42
- x1 = face.get('x1')
43
- y1 = face.get('y1')
44
- x2 = face.get('x2')
45
- y2 = face.get('y2')
46
-
47
- if x1 < 0:
48
- x1 = 0
49
- if y1 < 0:
50
- y1 = 0
51
- if x2 >= image1.width:
52
- x2 = image1.width - 1
53
- if y2 >= image1.height:
54
- y2 = image1.height - 1
55
-
56
- face1 = image1.crop((x1, y1, x2, y2))
57
- face_image_ratio = face1.width / float(face1.height)
58
- resized_w = int(face_image_ratio * 150)
59
- resized_h = 150
60
-
61
- face1 = face1.resize((int(resized_w), int(resized_h)))
62
-
63
- if r.json().get('face2') is not None:
64
- face = r.json().get('face2')
65
- x1 = face.get('x1')
66
- y1 = face.get('y1')
67
- x2 = face.get('x2')
68
- y2 = face.get('y2')
69
-
70
- if x1 < 0:
71
- x1 = 0
72
- if y1 < 0:
73
- y1 = 0
74
- if x2 >= image2.width:
75
- x2 = image2.width - 1
76
- if y2 >= image2.height:
77
- y2 = image2.height - 1
78
-
79
- face2 = image2.crop((x1, y1, x2, y2))
80
- face_image_ratio = face2.width / float(face2.height)
81
- resized_w = int(face_image_ratio * 150)
82
- resized_h = 150
83
-
84
- face2 = face2.resize((int(resized_w), int(resized_h)))
85
-
86
- if face1 is not None and face2 is not None:
87
- new_image = Image.new('RGB',(face1.width + face2.width + 10, 150), (80,80,80))
88
-
89
- new_image.paste(face1,(0,0))
90
- new_image.paste(face2,(face1.width + 10, 0))
91
- faces = new_image.copy()
92
- elif face1 is not None and face2 is None:
93
- new_image = Image.new('RGB',(face1.width + face1.width + 10, 150), (80,80,80))
94
-
95
- new_image.paste(face1,(0,0))
96
- faces = new_image.copy()
97
- elif face1 is None and face2 is not None:
98
- new_image = Image.new('RGB',(face2.width + face2.width + 10, 150), (80,80,80))
99
-
100
- new_image.paste(face2,(face2.width + 10, 0))
101
- faces = new_image.copy()
102
-
103
  except:
104
- pass
105
-
106
- return [faces, html]
107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
  with gr.Blocks(css=".gradio-container {background-color: #F4E5E0}") as demo:
109
  with gr.Row():
110
- with gr.Column():
111
- compare_face_input1 = gr.Image(type='filepath')
112
- gr.Examples(['face_examples/1.jpg', 'face_examples/3.jpg', 'face_examples/7.jpg', 'face_examples/9.jpg'],
113
- inputs=compare_face_input1)
114
- compare_face_button = gr.Button("Compare Face")
115
- with gr.Column():
116
- compare_face_input2 = gr.Image(type='filepath')
117
- gr.Examples(['face_examples/2.jpg', 'face_examples/4.jpg', 'face_examples/8.jpg', 'face_examples/10.jpg'],
118
- inputs=compare_face_input2)
119
- with gr.Column():
120
- compare_face_output = gr.Image(type="pil").style(height=150)
121
- compare_result_output = gr.HTML(label='Result')
122
-
123
- compare_face_button.click(compare_face, inputs=[compare_face_input1, compare_face_input2], outputs=[compare_face_output, compare_result_output])
 
 
124
 
125
  demo.launch(server_name="0.0.0.0", server_port=7860)
 
3
  import datadog_api_client
4
  from PIL import Image
5
 
6
+ def face_crop(image, face_rect):
7
+ x = face_rect.get('x')
8
+ y = face_rect.get('y')
9
+ width = face_rect.get('width')
10
+ height = face_rect.get('height')
11
+
12
+
13
+ if x < 0:
14
+ x = 0
15
+ if y < 0:
16
+ y = 0
17
+ if x + width >= image.width:
18
+ width = image.width - x
19
+ if y + height >= image.height:
20
+ height = image.height - y
21
+
22
+ face_image = image.crop((x, y, x + width - 1, y + height - 1))
23
+ face_image_ratio = face_image.width / float(face_image.height)
24
+ resized_w = int(face_image_ratio * 150)
25
+ resized_h = 150
26
+
27
+ face_image = face_image.resize((int(resized_w), int(resized_h)))
28
+ return face_image
29
+
30
+ def compare_face(image1, image2):
 
 
31
  try:
32
+ img_bytes1 = io.BytesIO()
33
+ image1.save(img_bytes1, format="JPEG")
34
+ img_bytes1.seek(0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  except:
36
+ return ["Failed to open image1", {"resultCode": "Failed to open image1"}]
 
 
37
 
38
+ try:
39
+ img_bytes2 = io.BytesIO()
40
+ image2.save(img_bytes2, format="JPEG")
41
+ img_bytes2.seek(0)
42
+ except:
43
+ return ["Failed to open image2", {"resultCode": "Failed to open image2"}]
44
+
45
+ url = "http://127.0.0.1:8080/compare_face"
46
+ files = {'image1': img_bytes1, 'image2': img_bytes2}
47
+ result = requests.post(url=url, files=files)
48
+ if result.ok:
49
+ json_result = result.json()
50
+ if json_result.get("resultCode") != "Ok":
51
+ return [json_result.get("resultCode"), json_result]
52
+
53
+ html = ""
54
+ faces1 = json_result.get("faces1", {})
55
+ faces2 = json_result.get("faces2", {})
56
+ results = json_result.get("results", {})
57
+
58
+ for result in results:
59
+ score = result.get('score')
60
+ face1_idx = result.get('face1')
61
+ face2_idx = result.get('face2')
62
+
63
+ face_image1 = face_crop(image1, faces1[face1_idx])
64
+ face_value1 = ('<img src="data:image/png;base64,{base64_image}" style="width: 100px; height: auto; object-fit: contain;"/>').format(base64_image=pil_image_to_base64(face_image1, format="PNG"))
65
+
66
+ face_image2 = face_crop(image2, faces2[face2_idx])
67
+ face_value2 = ('<img src="data:image/png;base64,{base64_image}" style="width: 100px; height: auto; object-fit: contain;"/>').format(base64_image=pil_image_to_base64(face_image2, format="PNG"))
68
+
69
+ match_icon = '<svg fill="red" width="19" height="32" viewBox="0 0 19 32"><path d="M0 13.92V10.2H19V13.92H0ZM0 21.64V17.92H19V21.64H0Z"></path><path d="M14.08 0H18.08L5.08 32H1.08L14.08 0Z"></path></svg>'
70
+ if score > 0.7:
71
+ match_icon = '<svg fill="green" width="19" height="32" viewBox="0 0 19 32"><path d="M0 13.9202V10.2002H19V13.9202H0ZM0 21.6402V17.9202H19V21.6402H0Z"></path></svg>'
72
+
73
+ item_value = ('<div style="align-items: center; gap: 10px; display: flex; flex-direction: column;">'
74
+ '<div style="display: flex; align-items: center; gap: 20px;">'
75
+ '{face_value1}'
76
+ '{match_icon}'
77
+ '{face_value2}'
78
+ '</div>'
79
+ '<div style="text-align: center; margin-top: 10px;">'
80
+ 'Score: {score}'
81
+ '</div>'
82
+ '</div>'
83
+ ).format(face_value1=face_value1, face_value2=face_value2, match_icon=match_icon, score=f"{score:.2f}")
84
+ html += item_value
85
+ html += '<hr style="border: 1px solid #C0C0C0; margin: 10px 0;"/>'
86
+
87
+ return html
88
+ else:
89
+ return result.text
90
+
91
  with gr.Blocks(css=".gradio-container {background-color: #F4E5E0}") as demo:
92
  with gr.Row():
93
+ with gr.Column(scale=7):
94
+ with gr.Row():
95
+ with gr.Column():
96
+ image_input1 = gr.Image(type='pil')
97
+ gr.Examples(['examples/1.webp', 'examples/2.webp', 'examples/3.webp', 'examples/4.webp'],
98
+ inputs=image_input1)
99
+ with gr.Column():
100
+ image_input2 = gr.Image(type='pil')
101
+ gr.Examples(['examples/5.webp', 'examples/6.webp', 'examples/7.webp', 'examples/8.webp'],
102
+ inputs=image_input2)
103
+ verifyThreshold = gr.Slider(minimum=0, maximum=1, value=0.67, label="Verify Threshold")
104
+ face_recog_button = gr.Button("Face Recognition")
105
+ with gr.Column(scale=3):
106
+ recog_html_output = gr.HTML()
107
+
108
+ face_recog_button.click(compare_face, inputs=[image_input1, image_input2, verifyThreshold], outputs=recog_html_output)
109
 
110
  demo.launch(server_name="0.0.0.0", server_port=7860)