Spaces:
Running
Running
File size: 4,569 Bytes
c88be80 f19a916 4ac0a4f f19a916 8da3e7b b2c192d 8da3e7b b2c192d c88be80 b2c192d 8da3e7b b2c192d f19a916 8da3e7b 3fe116d 831cf0c 3fe116d 831cf0c a22dc01 831cf0c f19a916 8878d9b b791bf5 f19a916 db99fd4 4ac0a4f f19a916 db99fd4 4ac0a4f f19a916 db99fd4 f19a916 5b451b0 b791bf5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
import gradio as gr
import requests
import datadog_api_client
from PIL import Image
def face_crop(image, face_rect):
x1 = face_rect.get('x1')
y1 = face_rect.get('y1')
x2 = face_rect.get('x2')
y2 = face_rect.get('y2')
width = x2 - x1 + 1
height = y2 - y2 + 1
if x1 < 0:
x1 = 0
if y1 < 0:
y1 = 0
if x2 >= image.width:
x2 = image.width - 1
if y2 >= image.height:
y2 = image.height - 1
face_image = image.crop((x1, y1, x2, y2))
face_image_ratio = face_image.width / float(face_image.height)
resized_w = int(face_image_ratio * 150)
resized_h = 150
face_image = face_image.resize((int(resized_w), int(resized_h)))
return face_image
def compare_face(frame1, frame2):
url = "http://127.0.0.1:8080/compare_face"
files = {'file1': open(frame1, 'rb'), 'file2': open(frame2, 'rb')}
file1 = None
file2 = None
try:
file1 = open(frame1, 'rb')
except:
return "Failed to open image1"
try:
file2 = open(frame2, 'rb')
except:
return "Failed to open image2"
url = "http://127.0.0.1:8080/compare_face"
files = {'file1': file1, 'file2': file2}
result = requests.post(url=url, files=files)
if result.ok:
json_result = result.json()
if json_result.get("resultCode") != "Ok":
return json_result.get("resultCode")
html = ""
faces1 = json_result.get("faces1", {})
faces2 = json_result.get("faces2", {})
results = json_result.get("results", {})
for result in results:
score = result.get('score')
face1_idx = result.get('face1')
face2_idx = result.get('face2')
face_image1 = face_crop(image1, faces1[face1_idx])
face_value1 = ('<img src="data:image/png;base64,{base64_image}" style="width: 100px; height: auto; object-fit: contain;"/>').format(base64_image=pil_image_to_base64(face_image1, format="PNG"))
face_image2 = face_crop(image2, faces2[face2_idx])
face_value2 = ('<img src="data:image/png;base64,{base64_image}" style="width: 100px; height: auto; object-fit: contain;"/>').format(base64_image=pil_image_to_base64(face_image2, format="PNG"))
match_icon = '<svg fill="red" width="19" height="32" viewBox="0 0 19 32"><path d="M0 13.92V10.2H19V13.92H0ZM0 21.64V17.92H19V21.64H0Z"></path><path d="M14.08 0H18.08L5.08 32H1.08L14.08 0Z"></path></svg>'
if score > 0.67:
match_icon = '<svg fill="green" width="19" height="32" viewBox="0 0 19 32"><path d="M0 13.9202V10.2002H19V13.9202H0ZM0 21.6402V17.9202H19V21.6402H0Z"></path></svg>'
item_value = ('<div style="align-items: center; gap: 10px; display: flex; flex-direction: column;">'
'<div style="display: flex; align-items: center; gap: 20px;">'
'{face_value1}'
'{match_icon}'
'{face_value2}'
'</div>'
'<div style="text-align: center; margin-top: 10px;">'
'Score: {score}'
'</div>'
'</div>'
).format(face_value1=face_value1, face_value2=face_value2, match_icon=match_icon, score=f"{score:.2f}")
html += item_value
html += '<hr style="border: 1px solid #C0C0C0; margin: 10px 0;"/>'
return html
else:
return result.text
with gr.Blocks(css=".gradio-container {background-color: #F4E5E0}") as demo:
with gr.Row():
with gr.Column(scale=7):
with gr.Row():
with gr.Column():
image_input1 = gr.Image(type='filepath')
gr.Examples(['face_examples/1.jpg', 'face_examples/3.jpg', 'face_examples/7.jpg', 'face_examples/9.jpg'],
inputs=image_input1)
with gr.Column():
image_input2 = gr.Image(type='filepath')
gr.Examples(['face_examples/2.jpg', 'face_examples/4.jpg', 'face_examples/8.jpg', 'face_examples/10.jpg'],
inputs=image_input2)
face_recog_button = gr.Button("Compare Face")
with gr.Column(scale=3):
recog_html_output = gr.HTML()
face_recog_button.click(compare_face, inputs=[image_input1, image_input2], outputs=recog_html_output)
demo.launch(server_name="0.0.0.0", server_port=7860) |