biomass / models /dpt_head.py
juansensio's picture
Upload 5 files
c5d0550 verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.
import torch
from torch import nn
import torchvision
from models.backbone import resize
def kaiming_init(module: nn.Module,
a: float = 0,
mode: str = 'fan_out',
nonlinearity: str = 'relu',
bias: float = 0,
distribution: str = 'normal') -> None:
assert distribution in ['uniform', 'normal']
if hasattr(module, 'weight') and module.weight is not None:
if distribution == 'uniform':
nn.init.kaiming_uniform_(
module.weight, a=a, mode=mode, nonlinearity=nonlinearity)
else:
nn.init.kaiming_normal_(
module.weight, a=a, mode=mode, nonlinearity=nonlinearity)
if hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias)
class ConvModule(nn.Module):
"""A conv block that bundles conv/norm/activation layers.
This block simplifies the usage of convolution layers, which are commonly
used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU).
It is based upon three build methods: `build_conv_layer()`,
`build_norm_layer()` and `build_activation_layer()`.
Besides, we add some additional features in this module.
1. Automatically set `bias` of the conv layer.
2. Spectral norm is supported.
3. More padding modes are supported. Before PyTorch 1.5, nn.Conv2d only
supports zero and circular padding, and we add "reflect" padding mode.
Args:
in_channels (int): Number of channels in the input feature map.
Same as that in ``nn._ConvNd``.
out_channels (int): Number of channels produced by the convolution.
Same as that in ``nn._ConvNd``.
kernel_size (int | tuple[int]): Size of the convolving kernel.
Same as that in ``nn._ConvNd``.
stride (int | tuple[int]): Stride of the convolution.
Same as that in ``nn._ConvNd``.
padding (int | tuple[int]): Zero-padding added to both sides of
the input. Same as that in ``nn._ConvNd``.
dilation (int | tuple[int]): Spacing between kernel elements.
Same as that in ``nn._ConvNd``.
groups (int): Number of blocked connections from input channels to
output channels. Same as that in ``nn._ConvNd``.
bias (bool | str): If specified as `auto`, it will be decided by the
norm_cfg. Bias will be set as True if `norm_cfg` is None, otherwise
False. Default: "auto".
conv_cfg (dict): Config dict for convolution layer. Default: None,
which means using conv2d.
norm_cfg (dict): Config dict for normalization layer. Default: None.
act_cfg (dict): Config dict for activation layer.
Default: dict(type='ReLU').
inplace (bool): Whether to use inplace mode for activation.
Default: True.
with_spectral_norm (bool): Whether use spectral norm in conv module.
Default: False.
padding_mode (str): If the `padding_mode` has not been supported by
current `Conv2d` in PyTorch, we will use our own padding layer
instead. Currently, we support ['zeros', 'circular'] with official
implementation and ['reflect'] with our own implementation.
Default: 'zeros'.
order (tuple[str]): The order of conv/norm/activation layers. It is a
sequence of "conv", "norm" and "act". Common examples are
("conv", "norm", "act") and ("act", "conv", "norm").
Default: ('conv', 'norm', 'act').
"""
_abbr_ = 'conv_block'
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride = 1,
padding = 0,
dilation = 1,
groups = 1,
bias = 'auto',
conv_cfg = None,
norm_cfg = None,
act_cfg = dict(type='ReLU'),
inplace= True,
with_spectral_norm = False,
padding_mode = 'zeros',
order = ('conv', 'norm', 'act')):
super().__init__()
assert conv_cfg is None or isinstance(conv_cfg, dict)
assert norm_cfg is None or isinstance(norm_cfg, dict)
assert act_cfg is None or isinstance(act_cfg, dict)
official_padding_mode = ['zeros', 'circular']
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.inplace = inplace
self.with_spectral_norm = with_spectral_norm
self.with_explicit_padding = padding_mode not in official_padding_mode
self.order = order
assert isinstance(self.order, tuple) and len(self.order) == 3
assert set(order) == {'conv', 'norm', 'act'}
self.with_norm = norm_cfg is not None
self.with_activation = act_cfg is not None
# if the conv layer is before a norm layer, bias is unnecessary.
if bias == 'auto':
bias = not self.with_norm
self.with_bias = bias
if self.with_explicit_padding:
pad_cfg = dict(type=padding_mode)
self.padding_layer = build_padding_layer(pad_cfg, padding)
# to do Camille put back
# reset padding to 0 for conv module
conv_padding = 0 if self.with_explicit_padding else padding
# build convolution layer
self.conv = nn.Conv2d( #build_conv_layer(#conv_cfg,
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=conv_padding,
dilation=dilation,
groups=groups,
bias=bias)
# export the attributes of self.conv to a higher level for convenience
self.in_channels = self.conv.in_channels
self.out_channels = self.conv.out_channels
self.kernel_size = self.conv.kernel_size
self.stride = self.conv.stride
self.padding = padding
self.dilation = self.conv.dilation
self.transposed = self.conv.transposed
self.output_padding = self.conv.output_padding
self.groups = self.conv.groups
if self.with_spectral_norm:
self.conv = nn.utils.spectral_norm(self.conv)
self.norm_name = None # type: ignore
# build activation layer
if self.with_activation:
act_cfg_ = act_cfg.copy() # type: ignore
# nn.Tanh has no 'inplace' argument
if act_cfg_['type'] not in [
'Tanh', 'PReLU', 'Sigmoid', 'HSigmoid', 'Swish', 'GELU'
]:
act_cfg_.setdefault('inplace', inplace)
self.activate = nn.ReLU() # build_activation_layer(act_cfg_)
# Use msra init by default
torch.manual_seed(1)
self.init_weights()
@property
def norm(self):
if self.norm_name:
return getattr(self, self.norm_name)
else:
return None
def init_weights(self):
# 1. It is mainly for customized conv layers with their own
# initialization manners by calling their own ``init_weights()``,
# and we do not want ConvModule to override the initialization.
# 2. For customized conv layers without their own initialization
# manners (that is, they don't have their own ``init_weights()``)
# and PyTorch's conv layers, they will be initialized by
# this method with default ``kaiming_init``.
# Note: For PyTorch's conv layers, they will be overwritten by our
# initialization implementation using default ``kaiming_init``.
if not hasattr(self.conv, 'init_weights'):
if self.with_activation and self.act_cfg['type'] == 'LeakyReLU':
nonlinearity = 'leaky_relu'
a = self.act_cfg.get('negative_slope', 0.01)
else:
nonlinearity = 'relu'
a = 0
kaiming_init(self.conv, a=a, nonlinearity=nonlinearity)
if self.with_norm:
constant_init(self.norm, 1, bias=0)
def forward(self,
x: torch.Tensor,
activate: bool = True,
norm: bool = True,
debug: bool = False) -> torch.Tensor:
for layer in self.order:
if debug==True:
breakpoint()
if layer == 'conv':
if self.with_explicit_padding:
x = self.padding_layer(x)
x = self.conv(x)
elif layer == 'norm' and norm and self.with_norm:
x = self.norm(x)
elif layer == 'act' and activate and self.with_activation:
x = self.activate(x)
return x
class Interpolate(nn.Module):
def __init__(self, scale_factor, mode, align_corners=False):
super(Interpolate, self).__init__()
self.interp = nn.functional.interpolate
self.scale_factor = scale_factor
self.mode = mode
self.align_corners = align_corners
def forward(self, x):
x = self.interp(
x,
scale_factor=self.scale_factor,
mode=self.mode,
align_corners=self.align_corners)
return x
class HeadDepth(nn.Module):
def __init__(self, features, classify=False, n_bins=256):
super(HeadDepth, self).__init__()
self.head = nn.Sequential(
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(32, 1 if not classify else n_bins, kernel_size=1, stride=1, padding=0),
)
def forward(self, x):
x = self.head(x)
return x
class ReassembleBlocks(nn.Module):
"""ViTPostProcessBlock, process cls_token in ViT backbone output and
rearrange the feature vector to feature map.
Args:
in_channels (int): ViT feature channels. Default: 768.
out_channels (List): output channels of each stage.
Default: [96, 192, 384, 768].
readout_type (str): Type of readout operation. Default: 'ignore'.
patch_size (int): The patch size. Default: 16.
init_cfg (dict, optional): Initialization config dict. Default: None.
"""
def __init__(self,
in_channels=1024, #768,
out_channels=[128, 256, 512, 1024], #[96, 192, 384, 768],
readout_type='project', # 'ignore',
patch_size=16):
super(ReassembleBlocks, self).__init__()#init_cfg)
assert readout_type in ['ignore', 'add', 'project']
self.readout_type = readout_type
self.patch_size = patch_size
self.projects = nn.ModuleList([
ConvModule(
in_channels=in_channels,
out_channels=out_channel,
kernel_size=1,
act_cfg=None,
) for out_channel in out_channels
])
self.resize_layers = nn.ModuleList([
nn.ConvTranspose2d(
in_channels=out_channels[0],
out_channels=out_channels[0],
kernel_size=4,
stride=4,
padding=0),
nn.ConvTranspose2d(
in_channels=out_channels[1],
out_channels=out_channels[1],
kernel_size=2,
stride=2,
padding=0),
nn.Identity(),
nn.Conv2d(
in_channels=out_channels[3],
out_channels=out_channels[3],
kernel_size=3,
stride=2,
padding=1)
])
if self.readout_type == 'project':
self.readout_projects = nn.ModuleList()
for _ in range(len(self.projects)):
self.readout_projects.append(
nn.Sequential(
nn.Linear(2 * in_channels, in_channels),
nn.GELU()))
#build_activation_layer(dict(type='GELU'))))
def forward(self, inputs):
assert isinstance(inputs, list)
out = []
for i, x in enumerate(inputs):
assert len(x) == 2
x, cls_token = x[0], x[1]
feature_shape = x.shape
if self.readout_type == 'project':
x = x.flatten(2).permute((0, 2, 1))
readout = cls_token.unsqueeze(1).expand_as(x)
x = self.readout_projects[i](torch.cat((x, readout), -1))
x = x.permute(0, 2, 1).reshape(feature_shape)
elif self.readout_type == 'add':
x = x.flatten(2) + cls_token.unsqueeze(-1)
x = x.reshape(feature_shape)
else:
pass
x = self.projects[i](x)
x = self.resize_layers[i](x)
out.append(x)
return out
class PreActResidualConvUnit(nn.Module):
"""ResidualConvUnit, pre-activate residual unit.
Args:
in_channels (int): number of channels in the input feature map.
act_cfg (dict): dictionary to construct and config activation layer.
norm_cfg (dict): dictionary to construct and config norm layer.
stride (int): stride of the first block. Default: 1
dilation (int): dilation rate for convs layers. Default: 1.
init_cfg (dict, optional): Initialization config dict. Default: None.
"""
def __init__(self,
in_channels,
act_cfg,
norm_cfg,
stride=1,
dilation=1,
init_cfg=None):
super(PreActResidualConvUnit, self).__init__()#init_cfg)
self.conv1 = ConvModule(
in_channels,
in_channels,
3,
stride=stride,
padding=dilation,
dilation=dilation,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
bias=False,
order=('act', 'conv', 'norm'))
self.conv2 = ConvModule(
in_channels,
in_channels,
3,
padding=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
bias=False,
order=('act', 'conv', 'norm'))
def forward(self, inputs):
inputs_ = inputs.clone()
x = self.conv1(inputs)
x = self.conv2(x)
return x + inputs_
class FeatureFusionBlock(nn.Module):
"""FeatureFusionBlock, merge feature map from different stages.
Args:
in_channels (int): Input channels.
act_cfg (dict): The activation config for ResidualConvUnit.
norm_cfg (dict): Config dict for normalization layer.
expand (bool): Whether expand the channels in post process block.
Default: False.
align_corners (bool): align_corner setting for bilinear upsample.
Default: True.
init_cfg (dict, optional): Initialization config dict. Default: None.
"""
def __init__(self,
in_channels,
act_cfg,
norm_cfg,
expand=False,
align_corners=True,
init_cfg=None):
super(FeatureFusionBlock, self).__init__()#init_cfg)
self.in_channels = in_channels
self.expand = expand
self.align_corners = align_corners
self.out_channels = in_channels
if self.expand:
self.out_channels = in_channels // 2
self.project = ConvModule(
self.in_channels,
self.out_channels,
kernel_size=1,
act_cfg=None,
bias=True)
self.res_conv_unit1 = PreActResidualConvUnit(
in_channels=self.in_channels, act_cfg=act_cfg, norm_cfg=norm_cfg)
self.res_conv_unit2 = PreActResidualConvUnit(
in_channels=self.in_channels, act_cfg=act_cfg, norm_cfg=norm_cfg)
def forward(self, *inputs):
x = inputs[0]
if len(inputs) == 2:
if x.shape != inputs[1].shape:
res = resize(
inputs[1],
size=(x.shape[2], x.shape[3]),
mode='bilinear',
align_corners=False)
else:
res = inputs[1]
x = x + self.res_conv_unit1(res)
x = self.res_conv_unit2(x)
x = resize( x, scale_factor=2, mode='bilinear', align_corners=self.align_corners)
x = self.project(x)
return x
class DPTHead(nn.Module):
"""Vision Transformers for Dense Prediction.
This head is implemented of `DPT <https://arxiv.org/abs/2103.13413>`_.
Args:
embed_dims (int): The embed dimension of the ViT backbone.
Default: 768.
post_process_channels (List): Out channels of post process conv
layers. Default: [96, 192, 384, 768].
readout_type (str): Type of readout operation. Default: 'ignore'.
patch_size (int): The patch size. Default: 16.
expand_channels (bool): Whether expand the channels in post process
block. Default: False.
"""
def __init__(self,
in_channels=(1024, 1024, 1024, 1024),
channels=256,
embed_dims=1024,
post_process_channels=[128, 256, 512, 1024],
readout_type='project',
patch_size=16,
expand_channels=False,
min_depth = 0.001,
classify=False,
n_bins=256,
**kwargs):
super(DPTHead, self).__init__(**kwargs)
torch.manual_seed(1)
self.channels = channels
self.norm_cfg = None
self.min_depth = min_depth
self.max_depth = 10
self.n_bins = n_bins
self.classify = classify
self.in_channels = in_channels
self.expand_channels = expand_channels
self.reassemble_blocks = ReassembleBlocks(in_channels=embed_dims, # Camille 23-06-26
out_channels=post_process_channels) # Camille 23-06-26
self.post_process_channels = [
channel * math.pow(2, i) if expand_channels else channel
for i, channel in enumerate(post_process_channels)
]
self.convs = nn.ModuleList()
for channel in self.post_process_channels:
self.convs.append(
ConvModule(
channel,
self.channels,
kernel_size=3,
padding=1,
act_cfg=None,
bias=False))
self.fusion_blocks = nn.ModuleList()
self.act_cfg = {'type': 'ReLU'}
for _ in range(len(self.convs)):
self.fusion_blocks.append(
FeatureFusionBlock(self.channels, self.act_cfg, self.norm_cfg))
self.fusion_blocks[0].res_conv_unit1 = None
torch.manual_seed(1)
self.project = ConvModule(
self.channels,
self.channels,
kernel_size=3,
padding=1,
norm_cfg=None)
self.num_fusion_blocks = len(self.fusion_blocks)
self.num_reassemble_blocks = len(self.reassemble_blocks.resize_layers)
self.num_post_process_channels = len(self.post_process_channels)
assert self.num_fusion_blocks == self.num_reassemble_blocks
assert self.num_reassemble_blocks == self.num_post_process_channels
#self.conv_depth = HeadDepth(self.channels)
self.conv_depth = HeadDepth(self.channels, self.classify, self.n_bins)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, inputs):
assert len(inputs) == self.num_reassemble_blocks
x = [inp for inp in inputs]
x = self.reassemble_blocks(x)
x = [self.convs[i](feature) for i, feature in enumerate(x)]
out = self.fusion_blocks[0](x[-1])
for i in range(1, len(self.fusion_blocks)):
out = self.fusion_blocks[i](out, x[-(i + 1)])
out = self.project(out)
if self.classify:
logit = self.conv_depth(out)
#if self.bins_strategy == 'UD':
bins = torch.linspace(self.min_depth, self.max_depth, self.n_bins, device=inputs[0][0].device)
#linear strategy
logit = torch.relu(logit)
eps = 0.1
logit = logit + eps
logit = logit / logit.sum(dim=1, keepdim=True)
out = torch.einsum('ikmn,k->imn', [logit, bins]).unsqueeze(dim=1) #+ self.min_depth
else:
out = self.relu(self.conv_depth(out)) + self.min_depth
return out