File size: 21,216 Bytes
c5d0550
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.


import torch
from torch import nn
import torchvision

from models.backbone import resize

def kaiming_init(module: nn.Module,
                 a: float = 0,
                 mode: str = 'fan_out',
                 nonlinearity: str = 'relu',
                 bias: float = 0,
                 distribution: str = 'normal') -> None:
    assert distribution in ['uniform', 'normal']
    if hasattr(module, 'weight') and module.weight is not None:
        if distribution == 'uniform':
            nn.init.kaiming_uniform_(
                module.weight, a=a, mode=mode, nonlinearity=nonlinearity)
        else:
            nn.init.kaiming_normal_(
                module.weight, a=a, mode=mode, nonlinearity=nonlinearity)
    if hasattr(module, 'bias') and module.bias is not None:
        nn.init.constant_(module.bias, bias)

class ConvModule(nn.Module):
    """A conv block that bundles conv/norm/activation layers.
    This block simplifies the usage of convolution layers, which are commonly
    used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU).
    It is based upon three build methods: `build_conv_layer()`,
    `build_norm_layer()` and `build_activation_layer()`.
    Besides, we add some additional features in this module.
    1. Automatically set `bias` of the conv layer.
    2. Spectral norm is supported.
    3. More padding modes are supported. Before PyTorch 1.5, nn.Conv2d only
    supports zero and circular padding, and we add "reflect" padding mode.
    Args:
        in_channels (int): Number of channels in the input feature map.
            Same as that in ``nn._ConvNd``.
        out_channels (int): Number of channels produced by the convolution.
            Same as that in ``nn._ConvNd``.
        kernel_size (int | tuple[int]): Size of the convolving kernel.
            Same as that in ``nn._ConvNd``.
        stride (int | tuple[int]): Stride of the convolution.
            Same as that in ``nn._ConvNd``.
        padding (int | tuple[int]): Zero-padding added to both sides of
            the input. Same as that in ``nn._ConvNd``.
        dilation (int | tuple[int]): Spacing between kernel elements.
            Same as that in ``nn._ConvNd``.
        groups (int): Number of blocked connections from input channels to
            output channels. Same as that in ``nn._ConvNd``.
        bias (bool | str): If specified as `auto`, it will be decided by the
            norm_cfg. Bias will be set as True if `norm_cfg` is None, otherwise
            False. Default: "auto".
        conv_cfg (dict): Config dict for convolution layer. Default: None,
            which means using conv2d.
        norm_cfg (dict): Config dict for normalization layer. Default: None.
        act_cfg (dict): Config dict for activation layer.
            Default: dict(type='ReLU').
        inplace (bool): Whether to use inplace mode for activation.
            Default: True.
        with_spectral_norm (bool): Whether use spectral norm in conv module.
            Default: False.
        padding_mode (str): If the `padding_mode` has not been supported by
            current `Conv2d` in PyTorch, we will use our own padding layer
            instead. Currently, we support ['zeros', 'circular'] with official
            implementation and ['reflect'] with our own implementation.
            Default: 'zeros'.
        order (tuple[str]): The order of conv/norm/activation layers. It is a
            sequence of "conv", "norm" and "act". Common examples are
            ("conv", "norm", "act") and ("act", "conv", "norm").
            Default: ('conv', 'norm', 'act').
    """

    _abbr_ = 'conv_block'

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride = 1,
                 padding = 0,
                 dilation = 1,
                 groups = 1,
                 bias = 'auto',
                 conv_cfg = None,
                 norm_cfg = None,
                 act_cfg = dict(type='ReLU'),
                 inplace= True,
                 with_spectral_norm = False,
                 padding_mode = 'zeros',
                 order = ('conv', 'norm', 'act')):
        super().__init__()
        assert conv_cfg is None or isinstance(conv_cfg, dict)
        assert norm_cfg is None or isinstance(norm_cfg, dict)
        assert act_cfg is None or isinstance(act_cfg, dict)
        official_padding_mode = ['zeros', 'circular']
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        self.inplace = inplace
        self.with_spectral_norm = with_spectral_norm
        self.with_explicit_padding = padding_mode not in official_padding_mode
        self.order = order
        assert isinstance(self.order, tuple) and len(self.order) == 3
        assert set(order) == {'conv', 'norm', 'act'}

        self.with_norm = norm_cfg is not None
        self.with_activation = act_cfg is not None
        # if the conv layer is before a norm layer, bias is unnecessary.
        if bias == 'auto':
            bias = not self.with_norm
        self.with_bias = bias

        if self.with_explicit_padding:
            pad_cfg = dict(type=padding_mode)
            self.padding_layer = build_padding_layer(pad_cfg, padding)
        # to do Camille put back

        # reset padding to 0 for conv module
        conv_padding = 0 if self.with_explicit_padding else padding
        # build convolution layer
        self.conv = nn.Conv2d(  #build_conv_layer(#conv_cfg,
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=conv_padding,
            dilation=dilation,
            groups=groups,
            bias=bias)
        # export the attributes of self.conv to a higher level for convenience
        self.in_channels = self.conv.in_channels
        self.out_channels = self.conv.out_channels
        self.kernel_size = self.conv.kernel_size
        self.stride = self.conv.stride
        self.padding = padding
        self.dilation = self.conv.dilation
        self.transposed = self.conv.transposed
        self.output_padding = self.conv.output_padding
        self.groups = self.conv.groups

        if self.with_spectral_norm:
            self.conv = nn.utils.spectral_norm(self.conv)

        self.norm_name = None  # type: ignore

        # build activation layer
        if self.with_activation:
            act_cfg_ = act_cfg.copy()  # type: ignore
            # nn.Tanh has no 'inplace' argument
            if act_cfg_['type'] not in [
                    'Tanh', 'PReLU', 'Sigmoid', 'HSigmoid', 'Swish', 'GELU'
            ]:
                act_cfg_.setdefault('inplace', inplace)
            self.activate = nn.ReLU() # build_activation_layer(act_cfg_)

        # Use msra init by default
        torch.manual_seed(1)
        self.init_weights()

    @property
    def norm(self):
        if self.norm_name:
            return getattr(self, self.norm_name)
        else:
            return None

    def init_weights(self):
        # 1. It is mainly for customized conv layers with their own
        #    initialization manners by calling their own ``init_weights()``,
        #    and we do not want ConvModule to override the initialization.
        # 2. For customized conv layers without their own initialization
        #    manners (that is, they don't have their own ``init_weights()``)
        #    and PyTorch's conv layers, they will be initialized by
        #    this method with default ``kaiming_init``.
        # Note: For PyTorch's conv layers, they will be overwritten by our
        #    initialization implementation using default ``kaiming_init``.
        if not hasattr(self.conv, 'init_weights'):
            if self.with_activation and self.act_cfg['type'] == 'LeakyReLU':
                nonlinearity = 'leaky_relu'
                a = self.act_cfg.get('negative_slope', 0.01)
            else:
                nonlinearity = 'relu'
                a = 0
            kaiming_init(self.conv, a=a, nonlinearity=nonlinearity)
        if self.with_norm:
            constant_init(self.norm, 1, bias=0)

    def forward(self,
                x: torch.Tensor,
                activate: bool = True,
                norm: bool = True, 
                debug: bool = False) -> torch.Tensor:
        
        for layer in self.order:
            if debug==True:
                breakpoint()
            if layer == 'conv':
                if self.with_explicit_padding:
                    x = self.padding_layer(x)
                x = self.conv(x)
            elif layer == 'norm' and norm and self.with_norm:
                x = self.norm(x)
            elif layer == 'act' and activate and self.with_activation:
                x = self.activate(x)
        return x


class Interpolate(nn.Module):
    def __init__(self, scale_factor, mode, align_corners=False):
        super(Interpolate, self).__init__()
        self.interp = nn.functional.interpolate
        self.scale_factor = scale_factor
        self.mode = mode
        self.align_corners = align_corners

    def forward(self, x):
        x = self.interp(
            x,
            scale_factor=self.scale_factor,
            mode=self.mode,
            align_corners=self.align_corners)
        return x

class HeadDepth(nn.Module):
    def __init__(self, features, classify=False, n_bins=256):
        super(HeadDepth, self).__init__()
        self.head = nn.Sequential(
            nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
            Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
            nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.Conv2d(32, 1 if not classify else n_bins, kernel_size=1, stride=1, padding=0),
        )
    def forward(self, x):
        x = self.head(x)
        return x    

    
class ReassembleBlocks(nn.Module):
    """ViTPostProcessBlock, process cls_token in ViT backbone output and
    rearrange the feature vector to feature map.
    Args:
        in_channels (int): ViT feature channels. Default: 768.
        out_channels (List): output channels of each stage.
            Default: [96, 192, 384, 768].
        readout_type (str): Type of readout operation. Default: 'ignore'.
        patch_size (int): The patch size. Default: 16.
        init_cfg (dict, optional): Initialization config dict. Default: None.
    """
    def __init__(self,
                 in_channels=1024, #768,
                 out_channels=[128, 256, 512, 1024],  #[96, 192, 384, 768],
                 readout_type='project', # 'ignore',
                 patch_size=16):
        super(ReassembleBlocks, self).__init__()#init_cfg)

        assert readout_type in ['ignore', 'add', 'project']
        self.readout_type = readout_type
        self.patch_size = patch_size

        self.projects = nn.ModuleList([
            ConvModule(
                in_channels=in_channels,
                out_channels=out_channel,
                kernel_size=1,
                act_cfg=None,
            ) for out_channel in out_channels
        ])

        self.resize_layers = nn.ModuleList([
            nn.ConvTranspose2d(
                in_channels=out_channels[0],
                out_channels=out_channels[0],
                kernel_size=4,
                stride=4,
                padding=0),
            nn.ConvTranspose2d(
                in_channels=out_channels[1],
                out_channels=out_channels[1],
                kernel_size=2,
                stride=2,
                padding=0),
            nn.Identity(),
            nn.Conv2d(
                in_channels=out_channels[3],
                out_channels=out_channels[3],
                kernel_size=3,
                stride=2,
                padding=1)
        ])
        if self.readout_type == 'project':
            self.readout_projects = nn.ModuleList()
            for _ in range(len(self.projects)):
                self.readout_projects.append(
                    nn.Sequential(
                        nn.Linear(2 * in_channels, in_channels),
                        nn.GELU()))
                        #build_activation_layer(dict(type='GELU'))))

    def forward(self, inputs):
        assert isinstance(inputs, list)
        out = []
        for i, x in enumerate(inputs):
            assert len(x) == 2
            x, cls_token = x[0], x[1]
            feature_shape = x.shape
            if self.readout_type == 'project':
                x = x.flatten(2).permute((0, 2, 1))
                readout = cls_token.unsqueeze(1).expand_as(x)
                x = self.readout_projects[i](torch.cat((x, readout), -1))
                x = x.permute(0, 2, 1).reshape(feature_shape)
            elif self.readout_type == 'add':
                x = x.flatten(2) + cls_token.unsqueeze(-1)
                x = x.reshape(feature_shape)
            else:
                pass
            x = self.projects[i](x)
            x = self.resize_layers[i](x)
            out.append(x)
        return out


class PreActResidualConvUnit(nn.Module):
    """ResidualConvUnit, pre-activate residual unit.
    Args:
        in_channels (int): number of channels in the input feature map.
        act_cfg (dict): dictionary to construct and config activation layer.
        norm_cfg (dict): dictionary to construct and config norm layer.
        stride (int): stride of the first block. Default: 1
        dilation (int): dilation rate for convs layers. Default: 1.
        init_cfg (dict, optional): Initialization config dict. Default: None.
    """

    def __init__(self,
                 in_channels,
                 act_cfg,
                 norm_cfg,
                 stride=1,
                 dilation=1,
                 init_cfg=None):
        super(PreActResidualConvUnit, self).__init__()#init_cfg)
        self.conv1 = ConvModule(
            in_channels,
            in_channels,
            3,
            stride=stride,
            padding=dilation,
            dilation=dilation,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg,
            bias=False,
            order=('act', 'conv', 'norm'))
        self.conv2 = ConvModule(
            in_channels,
            in_channels,
            3,
            padding=1,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg,
            bias=False,
            order=('act', 'conv', 'norm'))
    def forward(self, inputs):
        inputs_ = inputs.clone()
        x = self.conv1(inputs)
        x = self.conv2(x)
        return x + inputs_


class FeatureFusionBlock(nn.Module):
    """FeatureFusionBlock, merge feature map from different stages.
    Args:
        in_channels (int): Input channels.
        act_cfg (dict): The activation config for ResidualConvUnit.
        norm_cfg (dict): Config dict for normalization layer.
        expand (bool): Whether expand the channels in post process block.
            Default: False.
        align_corners (bool): align_corner setting for bilinear upsample.
            Default: True.
        init_cfg (dict, optional): Initialization config dict. Default: None.
    """

    def __init__(self,
                 in_channels,
                 act_cfg,
                 norm_cfg,
                 expand=False,
                 align_corners=True,
                 init_cfg=None):
        super(FeatureFusionBlock, self).__init__()#init_cfg)
        self.in_channels = in_channels
        self.expand = expand
        self.align_corners = align_corners
        self.out_channels = in_channels
        if self.expand:
            self.out_channels = in_channels // 2
        self.project = ConvModule(
            self.in_channels,
            self.out_channels,
            kernel_size=1,
            act_cfg=None,
            bias=True)
        self.res_conv_unit1 = PreActResidualConvUnit(
            in_channels=self.in_channels, act_cfg=act_cfg, norm_cfg=norm_cfg)
        self.res_conv_unit2 = PreActResidualConvUnit(
            in_channels=self.in_channels, act_cfg=act_cfg, norm_cfg=norm_cfg)

    def forward(self, *inputs):
        x = inputs[0] 
        
        if len(inputs) == 2:
            if x.shape != inputs[1].shape:
                res = resize(
                    inputs[1],
                    size=(x.shape[2], x.shape[3]),
                    mode='bilinear',
                    align_corners=False)
            else:
                res = inputs[1]
            x = x + self.res_conv_unit1(res)
        x = self.res_conv_unit2(x) 
        x = resize( x, scale_factor=2, mode='bilinear', align_corners=self.align_corners)
        x = self.project(x) 
        return x

class DPTHead(nn.Module):
    """Vision Transformers for Dense Prediction.
    This head is implemented of `DPT <https://arxiv.org/abs/2103.13413>`_.
    Args:
        embed_dims (int): The embed dimension of the ViT backbone.
            Default: 768.
        post_process_channels (List): Out channels of post process conv
            layers. Default: [96, 192, 384, 768].
        readout_type (str): Type of readout operation. Default: 'ignore'.
        patch_size (int): The patch size. Default: 16.
        expand_channels (bool): Whether expand the channels in post process
            block. Default: False.
    """

    def __init__(self,
                 in_channels=(1024, 1024, 1024, 1024),
                 channels=256,
                 embed_dims=1024,
                 post_process_channels=[128, 256, 512, 1024],
                 readout_type='project',
                 patch_size=16,
                 expand_channels=False,
                 min_depth = 0.001,
                 classify=False,
                 n_bins=256,
                 **kwargs):
        super(DPTHead, self).__init__(**kwargs)
        torch.manual_seed(1)
        self.channels = channels
        self.norm_cfg = None
        self.min_depth = min_depth
        self.max_depth = 10
        self.n_bins = n_bins
        self.classify = classify
        self.in_channels = in_channels
        self.expand_channels = expand_channels
        self.reassemble_blocks = ReassembleBlocks(in_channels=embed_dims, # Camille 23-06-26 
                                                  out_channels=post_process_channels) # Camille 23-06-26
        
        self.post_process_channels = [
            channel * math.pow(2, i) if expand_channels else channel
            for i, channel in enumerate(post_process_channels)
        ]
        self.convs = nn.ModuleList()
        for channel in self.post_process_channels:
            self.convs.append(
                ConvModule(
                    channel,
                    self.channels,
                    kernel_size=3,
                    padding=1,
                    act_cfg=None,
                    bias=False))
        self.fusion_blocks = nn.ModuleList()
        self.act_cfg = {'type': 'ReLU'}
        for _ in range(len(self.convs)):
            self.fusion_blocks.append(
                FeatureFusionBlock(self.channels, self.act_cfg, self.norm_cfg))
        self.fusion_blocks[0].res_conv_unit1 = None
        torch.manual_seed(1)
        self.project = ConvModule(
            self.channels,
            self.channels,
            kernel_size=3,
            padding=1,
            norm_cfg=None)
        self.num_fusion_blocks = len(self.fusion_blocks)
        self.num_reassemble_blocks = len(self.reassemble_blocks.resize_layers)
        self.num_post_process_channels = len(self.post_process_channels)
        assert self.num_fusion_blocks == self.num_reassemble_blocks
        assert self.num_reassemble_blocks == self.num_post_process_channels
        #self.conv_depth = HeadDepth(self.channels)
        self.conv_depth = HeadDepth(self.channels, self.classify, self.n_bins)
        self.relu = nn.ReLU()
        self.sigmoid = nn.Sigmoid()
        
        
    def forward(self, inputs):
       
        assert len(inputs) == self.num_reassemble_blocks
        x = [inp for inp in inputs]
        
        x = self.reassemble_blocks(x) 
        x = [self.convs[i](feature) for i, feature in enumerate(x)] 
        out = self.fusion_blocks[0](x[-1]) 
        
        for i in range(1, len(self.fusion_blocks)):
            out = self.fusion_blocks[i](out, x[-(i + 1)])
        
        out = self.project(out) 
        if self.classify:
            logit = self.conv_depth(out)
        
            #if self.bins_strategy == 'UD':
            bins = torch.linspace(self.min_depth, self.max_depth, self.n_bins, device=inputs[0][0].device)
            #linear strategy
            logit = torch.relu(logit)
            eps = 0.1
            logit = logit + eps
            logit = logit / logit.sum(dim=1, keepdim=True)
            out = torch.einsum('ikmn,k->imn', [logit, bins]).unsqueeze(dim=1) #+ self.min_depth
        else:
            out = self.relu(self.conv_depth(out)) + self.min_depth
            
        return out