# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import torch from torch import nn import torchvision from models.backbone import resize def kaiming_init(module: nn.Module, a: float = 0, mode: str = 'fan_out', nonlinearity: str = 'relu', bias: float = 0, distribution: str = 'normal') -> None: assert distribution in ['uniform', 'normal'] if hasattr(module, 'weight') and module.weight is not None: if distribution == 'uniform': nn.init.kaiming_uniform_( module.weight, a=a, mode=mode, nonlinearity=nonlinearity) else: nn.init.kaiming_normal_( module.weight, a=a, mode=mode, nonlinearity=nonlinearity) if hasattr(module, 'bias') and module.bias is not None: nn.init.constant_(module.bias, bias) class ConvModule(nn.Module): """A conv block that bundles conv/norm/activation layers. This block simplifies the usage of convolution layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU). It is based upon three build methods: `build_conv_layer()`, `build_norm_layer()` and `build_activation_layer()`. Besides, we add some additional features in this module. 1. Automatically set `bias` of the conv layer. 2. Spectral norm is supported. 3. More padding modes are supported. Before PyTorch 1.5, nn.Conv2d only supports zero and circular padding, and we add "reflect" padding mode. Args: in_channels (int): Number of channels in the input feature map. Same as that in ``nn._ConvNd``. out_channels (int): Number of channels produced by the convolution. Same as that in ``nn._ConvNd``. kernel_size (int | tuple[int]): Size of the convolving kernel. Same as that in ``nn._ConvNd``. stride (int | tuple[int]): Stride of the convolution. Same as that in ``nn._ConvNd``. padding (int | tuple[int]): Zero-padding added to both sides of the input. Same as that in ``nn._ConvNd``. dilation (int | tuple[int]): Spacing between kernel elements. Same as that in ``nn._ConvNd``. groups (int): Number of blocked connections from input channels to output channels. Same as that in ``nn._ConvNd``. bias (bool | str): If specified as `auto`, it will be decided by the norm_cfg. Bias will be set as True if `norm_cfg` is None, otherwise False. Default: "auto". conv_cfg (dict): Config dict for convolution layer. Default: None, which means using conv2d. norm_cfg (dict): Config dict for normalization layer. Default: None. act_cfg (dict): Config dict for activation layer. Default: dict(type='ReLU'). inplace (bool): Whether to use inplace mode for activation. Default: True. with_spectral_norm (bool): Whether use spectral norm in conv module. Default: False. padding_mode (str): If the `padding_mode` has not been supported by current `Conv2d` in PyTorch, we will use our own padding layer instead. Currently, we support ['zeros', 'circular'] with official implementation and ['reflect'] with our own implementation. Default: 'zeros'. order (tuple[str]): The order of conv/norm/activation layers. It is a sequence of "conv", "norm" and "act". Common examples are ("conv", "norm", "act") and ("act", "conv", "norm"). Default: ('conv', 'norm', 'act'). """ _abbr_ = 'conv_block' def __init__(self, in_channels, out_channels, kernel_size, stride = 1, padding = 0, dilation = 1, groups = 1, bias = 'auto', conv_cfg = None, norm_cfg = None, act_cfg = dict(type='ReLU'), inplace= True, with_spectral_norm = False, padding_mode = 'zeros', order = ('conv', 'norm', 'act')): super().__init__() assert conv_cfg is None or isinstance(conv_cfg, dict) assert norm_cfg is None or isinstance(norm_cfg, dict) assert act_cfg is None or isinstance(act_cfg, dict) official_padding_mode = ['zeros', 'circular'] self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.act_cfg = act_cfg self.inplace = inplace self.with_spectral_norm = with_spectral_norm self.with_explicit_padding = padding_mode not in official_padding_mode self.order = order assert isinstance(self.order, tuple) and len(self.order) == 3 assert set(order) == {'conv', 'norm', 'act'} self.with_norm = norm_cfg is not None self.with_activation = act_cfg is not None # if the conv layer is before a norm layer, bias is unnecessary. if bias == 'auto': bias = not self.with_norm self.with_bias = bias if self.with_explicit_padding: pad_cfg = dict(type=padding_mode) self.padding_layer = build_padding_layer(pad_cfg, padding) # to do Camille put back # reset padding to 0 for conv module conv_padding = 0 if self.with_explicit_padding else padding # build convolution layer self.conv = nn.Conv2d( #build_conv_layer(#conv_cfg, in_channels, out_channels, kernel_size, stride=stride, padding=conv_padding, dilation=dilation, groups=groups, bias=bias) # export the attributes of self.conv to a higher level for convenience self.in_channels = self.conv.in_channels self.out_channels = self.conv.out_channels self.kernel_size = self.conv.kernel_size self.stride = self.conv.stride self.padding = padding self.dilation = self.conv.dilation self.transposed = self.conv.transposed self.output_padding = self.conv.output_padding self.groups = self.conv.groups if self.with_spectral_norm: self.conv = nn.utils.spectral_norm(self.conv) self.norm_name = None # type: ignore # build activation layer if self.with_activation: act_cfg_ = act_cfg.copy() # type: ignore # nn.Tanh has no 'inplace' argument if act_cfg_['type'] not in [ 'Tanh', 'PReLU', 'Sigmoid', 'HSigmoid', 'Swish', 'GELU' ]: act_cfg_.setdefault('inplace', inplace) self.activate = nn.ReLU() # build_activation_layer(act_cfg_) # Use msra init by default torch.manual_seed(1) self.init_weights() @property def norm(self): if self.norm_name: return getattr(self, self.norm_name) else: return None def init_weights(self): # 1. It is mainly for customized conv layers with their own # initialization manners by calling their own ``init_weights()``, # and we do not want ConvModule to override the initialization. # 2. For customized conv layers without their own initialization # manners (that is, they don't have their own ``init_weights()``) # and PyTorch's conv layers, they will be initialized by # this method with default ``kaiming_init``. # Note: For PyTorch's conv layers, they will be overwritten by our # initialization implementation using default ``kaiming_init``. if not hasattr(self.conv, 'init_weights'): if self.with_activation and self.act_cfg['type'] == 'LeakyReLU': nonlinearity = 'leaky_relu' a = self.act_cfg.get('negative_slope', 0.01) else: nonlinearity = 'relu' a = 0 kaiming_init(self.conv, a=a, nonlinearity=nonlinearity) if self.with_norm: constant_init(self.norm, 1, bias=0) def forward(self, x: torch.Tensor, activate: bool = True, norm: bool = True, debug: bool = False) -> torch.Tensor: for layer in self.order: if debug==True: breakpoint() if layer == 'conv': if self.with_explicit_padding: x = self.padding_layer(x) x = self.conv(x) elif layer == 'norm' and norm and self.with_norm: x = self.norm(x) elif layer == 'act' and activate and self.with_activation: x = self.activate(x) return x class Interpolate(nn.Module): def __init__(self, scale_factor, mode, align_corners=False): super(Interpolate, self).__init__() self.interp = nn.functional.interpolate self.scale_factor = scale_factor self.mode = mode self.align_corners = align_corners def forward(self, x): x = self.interp( x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners) return x class HeadDepth(nn.Module): def __init__(self, features, classify=False, n_bins=256): super(HeadDepth, self).__init__() self.head = nn.Sequential( nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1), Interpolate(scale_factor=2, mode="bilinear", align_corners=True), nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(32, 1 if not classify else n_bins, kernel_size=1, stride=1, padding=0), ) def forward(self, x): x = self.head(x) return x class ReassembleBlocks(nn.Module): """ViTPostProcessBlock, process cls_token in ViT backbone output and rearrange the feature vector to feature map. Args: in_channels (int): ViT feature channels. Default: 768. out_channels (List): output channels of each stage. Default: [96, 192, 384, 768]. readout_type (str): Type of readout operation. Default: 'ignore'. patch_size (int): The patch size. Default: 16. init_cfg (dict, optional): Initialization config dict. Default: None. """ def __init__(self, in_channels=1024, #768, out_channels=[128, 256, 512, 1024], #[96, 192, 384, 768], readout_type='project', # 'ignore', patch_size=16): super(ReassembleBlocks, self).__init__()#init_cfg) assert readout_type in ['ignore', 'add', 'project'] self.readout_type = readout_type self.patch_size = patch_size self.projects = nn.ModuleList([ ConvModule( in_channels=in_channels, out_channels=out_channel, kernel_size=1, act_cfg=None, ) for out_channel in out_channels ]) self.resize_layers = nn.ModuleList([ nn.ConvTranspose2d( in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=4, stride=4, padding=0), nn.ConvTranspose2d( in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0), nn.Identity(), nn.Conv2d( in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=3, stride=2, padding=1) ]) if self.readout_type == 'project': self.readout_projects = nn.ModuleList() for _ in range(len(self.projects)): self.readout_projects.append( nn.Sequential( nn.Linear(2 * in_channels, in_channels), nn.GELU())) #build_activation_layer(dict(type='GELU')))) def forward(self, inputs): assert isinstance(inputs, list) out = [] for i, x in enumerate(inputs): assert len(x) == 2 x, cls_token = x[0], x[1] feature_shape = x.shape if self.readout_type == 'project': x = x.flatten(2).permute((0, 2, 1)) readout = cls_token.unsqueeze(1).expand_as(x) x = self.readout_projects[i](torch.cat((x, readout), -1)) x = x.permute(0, 2, 1).reshape(feature_shape) elif self.readout_type == 'add': x = x.flatten(2) + cls_token.unsqueeze(-1) x = x.reshape(feature_shape) else: pass x = self.projects[i](x) x = self.resize_layers[i](x) out.append(x) return out class PreActResidualConvUnit(nn.Module): """ResidualConvUnit, pre-activate residual unit. Args: in_channels (int): number of channels in the input feature map. act_cfg (dict): dictionary to construct and config activation layer. norm_cfg (dict): dictionary to construct and config norm layer. stride (int): stride of the first block. Default: 1 dilation (int): dilation rate for convs layers. Default: 1. init_cfg (dict, optional): Initialization config dict. Default: None. """ def __init__(self, in_channels, act_cfg, norm_cfg, stride=1, dilation=1, init_cfg=None): super(PreActResidualConvUnit, self).__init__()#init_cfg) self.conv1 = ConvModule( in_channels, in_channels, 3, stride=stride, padding=dilation, dilation=dilation, norm_cfg=norm_cfg, act_cfg=act_cfg, bias=False, order=('act', 'conv', 'norm')) self.conv2 = ConvModule( in_channels, in_channels, 3, padding=1, norm_cfg=norm_cfg, act_cfg=act_cfg, bias=False, order=('act', 'conv', 'norm')) def forward(self, inputs): inputs_ = inputs.clone() x = self.conv1(inputs) x = self.conv2(x) return x + inputs_ class FeatureFusionBlock(nn.Module): """FeatureFusionBlock, merge feature map from different stages. Args: in_channels (int): Input channels. act_cfg (dict): The activation config for ResidualConvUnit. norm_cfg (dict): Config dict for normalization layer. expand (bool): Whether expand the channels in post process block. Default: False. align_corners (bool): align_corner setting for bilinear upsample. Default: True. init_cfg (dict, optional): Initialization config dict. Default: None. """ def __init__(self, in_channels, act_cfg, norm_cfg, expand=False, align_corners=True, init_cfg=None): super(FeatureFusionBlock, self).__init__()#init_cfg) self.in_channels = in_channels self.expand = expand self.align_corners = align_corners self.out_channels = in_channels if self.expand: self.out_channels = in_channels // 2 self.project = ConvModule( self.in_channels, self.out_channels, kernel_size=1, act_cfg=None, bias=True) self.res_conv_unit1 = PreActResidualConvUnit( in_channels=self.in_channels, act_cfg=act_cfg, norm_cfg=norm_cfg) self.res_conv_unit2 = PreActResidualConvUnit( in_channels=self.in_channels, act_cfg=act_cfg, norm_cfg=norm_cfg) def forward(self, *inputs): x = inputs[0] if len(inputs) == 2: if x.shape != inputs[1].shape: res = resize( inputs[1], size=(x.shape[2], x.shape[3]), mode='bilinear', align_corners=False) else: res = inputs[1] x = x + self.res_conv_unit1(res) x = self.res_conv_unit2(x) x = resize( x, scale_factor=2, mode='bilinear', align_corners=self.align_corners) x = self.project(x) return x class DPTHead(nn.Module): """Vision Transformers for Dense Prediction. This head is implemented of `DPT `_. Args: embed_dims (int): The embed dimension of the ViT backbone. Default: 768. post_process_channels (List): Out channels of post process conv layers. Default: [96, 192, 384, 768]. readout_type (str): Type of readout operation. Default: 'ignore'. patch_size (int): The patch size. Default: 16. expand_channels (bool): Whether expand the channels in post process block. Default: False. """ def __init__(self, in_channels=(1024, 1024, 1024, 1024), channels=256, embed_dims=1024, post_process_channels=[128, 256, 512, 1024], readout_type='project', patch_size=16, expand_channels=False, min_depth = 0.001, classify=False, n_bins=256, **kwargs): super(DPTHead, self).__init__(**kwargs) torch.manual_seed(1) self.channels = channels self.norm_cfg = None self.min_depth = min_depth self.max_depth = 10 self.n_bins = n_bins self.classify = classify self.in_channels = in_channels self.expand_channels = expand_channels self.reassemble_blocks = ReassembleBlocks(in_channels=embed_dims, # Camille 23-06-26 out_channels=post_process_channels) # Camille 23-06-26 self.post_process_channels = [ channel * math.pow(2, i) if expand_channels else channel for i, channel in enumerate(post_process_channels) ] self.convs = nn.ModuleList() for channel in self.post_process_channels: self.convs.append( ConvModule( channel, self.channels, kernel_size=3, padding=1, act_cfg=None, bias=False)) self.fusion_blocks = nn.ModuleList() self.act_cfg = {'type': 'ReLU'} for _ in range(len(self.convs)): self.fusion_blocks.append( FeatureFusionBlock(self.channels, self.act_cfg, self.norm_cfg)) self.fusion_blocks[0].res_conv_unit1 = None torch.manual_seed(1) self.project = ConvModule( self.channels, self.channels, kernel_size=3, padding=1, norm_cfg=None) self.num_fusion_blocks = len(self.fusion_blocks) self.num_reassemble_blocks = len(self.reassemble_blocks.resize_layers) self.num_post_process_channels = len(self.post_process_channels) assert self.num_fusion_blocks == self.num_reassemble_blocks assert self.num_reassemble_blocks == self.num_post_process_channels #self.conv_depth = HeadDepth(self.channels) self.conv_depth = HeadDepth(self.channels, self.classify, self.n_bins) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() def forward(self, inputs): assert len(inputs) == self.num_reassemble_blocks x = [inp for inp in inputs] x = self.reassemble_blocks(x) x = [self.convs[i](feature) for i, feature in enumerate(x)] out = self.fusion_blocks[0](x[-1]) for i in range(1, len(self.fusion_blocks)): out = self.fusion_blocks[i](out, x[-(i + 1)]) out = self.project(out) if self.classify: logit = self.conv_depth(out) #if self.bins_strategy == 'UD': bins = torch.linspace(self.min_depth, self.max_depth, self.n_bins, device=inputs[0][0].device) #linear strategy logit = torch.relu(logit) eps = 0.1 logit = logit + eps logit = logit / logit.sum(dim=1, keepdim=True) out = torch.einsum('ikmn,k->imn', [logit, bins]).unsqueeze(dim=1) #+ self.min_depth else: out = self.relu(self.conv_depth(out)) + self.min_depth return out