File size: 8,162 Bytes
6097f87
90dff8a
87303e5
90dff8a
f5e8a49
90dff8a
 
 
192d4c3
9846923
f0f6ac7
 
 
bdb3f22
 
90dff8a
33428af
 
 
90dff8a
f0f6ac7
 
 
c0f5c8c
f0f6ac7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0f5c8c
 
 
 
 
f0f6ac7
 
33428af
 
 
9846923
33428af
 
 
 
 
 
 
 
 
1115063
33428af
 
90dff8a
f5e8a49
bafb131
90dff8a
01cbe49
 
bafb131
 
90dff8a
bafb131
 
c31ee40
90dff8a
f5e8a49
01cbe49
 
23ff2b1
c31ee40
 
01cbe49
 
 
 
3f95bbc
9f5a744
c31ee40
 
6097f87
bdb3f22
 
c31ee40
3f95bbc
cf4ffba
 
 
918bcce
 
 
 
cf4ffba
da8565f
cf4ffba
72a3e3b
cf4ffba
72a3e3b
e687cbf
c31ee40
9f5a744
 
 
 
e687cbf
da8565f
33428af
da8565f
 
 
 
 
 
 
 
bdb3f22
 
c31ee40
da8565f
 
e687cbf
01cbe49
da8565f
 
 
 
 
 
 
 
 
 
943941c
da8565f
 
943941c
da8565f
 
 
 
c31ee40
 
da8565f
01cbe49
 
 
c31ee40
90dff8a
01cbe49
 
33428af
c31ee40
 
a8fc1f2
c31ee40
a8fc1f2
 
 
 
 
c31ee40
 
9846923
c31ee40
9846923
c31ee40
a8fc1f2
c31ee40
72a3e3b
a8fc1f2
9846923
 
 
 
 
 
a4f5085
9846923
 
01cbe49
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os
import cv2
from scenedetect import VideoManager, SceneManager
from scenedetect.detectors import ContentDetector
from moviepy.editor import VideoFileClip
from transformers import CLIPProcessor, CLIPModel
import torch
import yt_dlp
from PIL import Image
import uuid
from torchvision import models, transforms
from torch.nn import functional as F

categories = ["Joy", "Trust", "Fear", "Surprise", "Sadness", "Disgust", "Anger", "Anticipation"]


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")


def classify_frame(frame):
    categories = ["Joy", "Trust", "Fear", "Surprise", "Sadness", "Disgust", "Anger", "Anticipation"]
    
    # Load ResNet-50 model
    resnet50 = models.resnet50(pretrained=True)
    resnet50.eval().to(device)

    # Preprocess the image
    preprocess = transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])
    input_tensor = preprocess(Image.fromarray(frame))
    input_batch = input_tensor.unsqueeze(0).to(device)

    # Predict with ResNet-50
    with torch.no_grad():
        output = resnet50(input_batch)
        probabilities = F.softmax(output[0], dim=0)

    # Create a numpy array from the probabilities of the categories
    # This example assumes each category is mapped to a model output directly
    results_array = np.array([probabilities[i].item() for i in range(len(categories))])

    return results_array


def download_video(url):
    ydl_opts = {
        'format': 'bestvideo[height<=1440]+bestaudio/best[height<=1440]',
        'outtmpl': f'temp_videos/{uuid.uuid4()}_video.%(ext)s',
        'merge_output_format': 'mp4',
    }
    with yt_dlp.YoutubeDL(ydl_opts) as ydl:
        result = ydl.extract_info(url, download=True)
        video_filename = ydl.prepare_filename(result)
        safe_filename = sanitize_filename(video_filename)
        if os.path.exists(video_filename) and video_filename != safe_filename:
            os.rename(video_filename, safe_filename)
        return safe_filename

def sanitize_filename(filename):
    return "".join([c if c.isalnum() or c in " .-_()" else "_" for c in filename])

def find_scenes(video_path):
    video_manager = VideoManager([video_path])
    scene_manager = SceneManager()
    scene_manager.add_detector(ContentDetector(threshold=33))  # Adjusted threshold for finer segmentation
    video_manager.set_downscale_factor()
    video_manager.start()
    scene_manager.detect_scenes(frame_source=video_manager)
    scene_list = scene_manager.get_scene_list()
    video_manager.release()
    scenes = [(start.get_timecode(), end.get_timecode()) for start, end in scene_list]
    return scenes

def convert_timestamp_to_seconds(timestamp):
    h, m, s = map(float, timestamp.split(':'))
    return int(h) * 3600 + int(m) * 60 + s

def extract_frames(video_path, start_time, end_time):
    frames = []
    start_seconds = convert_timestamp_to_seconds(start_time)
    end_seconds = convert_timestamp_to_seconds(end_time)
    video_clip = VideoFileClip(video_path).subclip(start_seconds, end_seconds)
    # Extract more frames: every frame in the scene
    for frame_time in range(0, int(video_clip.duration * video_clip.fps), int(video_clip.fps / 5)):
        frame = video_clip.get_frame(frame_time / video_clip.fps)
        frames.append(frame)
    return frames

import numpy as np

def analyze_scenes(video_path, scenes, description):
    scene_scores = []
    negative_descriptions = [
        "black screen",
        "Intro text for a video",
        "dark scene without much contrast",
        "No people are in this scene",
        "A still shot of natural scenery",
        "Still-camera shot of a person's face"
    ]

    text_inputs = processor(text=[description] + negative_descriptions, return_tensors="pt", padding=True).to(device)
    text_features = model.get_text_features(**text_inputs).detach()
    positive_feature, negative_features = text_features[0], text_features[1:]

    for scene_num, (start_time, end_time) in enumerate(scenes):
        frames = extract_frames(video_path, start_time, end_time)
        if not frames:
            print(f"Scene {scene_num + 1}: Start={start_time}, End={end_time} - No frames extracted")
            continue

        scene_prob = 0.0
        sentiment_distributions = np.zeros(8)  # Assuming there are 8 sentiments
        for frame in frames:
            image = Image.fromarray(frame[..., ::-1])
            image_input = processor(images=image, return_tensors="pt").to(device)
            with torch.no_grad():
                image_features = model.get_image_features(**image_input).detach()
                positive_similarity = torch.cosine_similarity(image_features, positive_feature.unsqueeze(0)).squeeze().item()
                negative_similarities = torch.cosine_similarity(image_features, negative_features).squeeze().mean().item()
                scene_prob += positive_similarity - negative_similarities
            
            frame_sentiments = classify_frame(frame)
            sentiment_distributions += np.array(frame_sentiments)

        sentiment_distributions /= len(frames)  # Normalize to get average probabilities
        sentiment_percentages = {category: round(prob * 100, 2) for category, prob in zip(categories, sentiment_distributions)}
        scene_prob /= len(frames)
        scene_duration = convert_timestamp_to_seconds(end_time) - convert_timestamp_to_seconds(start_time)
        print(f"Scene {scene_num + 1}: Start={start_time}, End={end_time}, Probability={scene_prob}, Duration={scene_duration}, Sentiments: {sentiment_percentages}")

        scene_scores.append((scene_prob, start_time, end_time, scene_duration, sentiment_percentages))

    # Sort scenes by probability and select the best scene
    scene_scores.sort(reverse=True, key=lambda x: x[0])
    best_scene = max(scene_scores, key=lambda x: x[3])  # Select based on duration among the top scenes

    if best_scene:
        print(f"Best Scene: Start={best_scene[1]}, End={best_scene[2]}, Probability={best_scene[0]}, Duration={best_scene[3]}, Sentiments: {best_scene[4]}")
        return (best_scene[1], best_scene[2]), best_scene[4]  # Returning a tuple with scene times and sentiments
    else:
        print("No suitable scene found")
        return None, {}


def extract_best_scene(video_path, scene):
    if scene is None:
        return None

    start_time, end_time = scene
    start_seconds = convert_timestamp_to_seconds(start_time)
    end_seconds = convert_timestamp_to_seconds(end_time)
    video_clip = VideoFileClip(video_path).subclip(start_seconds, end_seconds)
    return video_clip

def process_video(video_url, description):
    video_path = download_video(video_url)
    scenes = find_scenes(video_path)
    best_scene = analyze_scenes(video_path, scenes, description)
    final_clip = extract_best_scene(video_path, best_scene)

    if final_clip:
        # Assuming final_clip is a MoviePy VideoFileClip object
        frame = np.array(final_clip.get_frame(0))  # Get the first frame at t=0 seconds
        frame_classification = classify_frame(frame)  # Classify the frame
        print("Frame classification probabilities:", frame_classification)

        output_dir = "output"
        os.makedirs(output_dir, exist_ok=True)
        final_clip_path = os.path.join(output_dir, f"{uuid.uuid4()}_final_clip.mp4")
        final_clip.write_videofile(final_clip_path, codec='libx264', audio_codec='aac')
        cleanup_temp_files()
        return final_clip_path

    return None


def cleanup_temp_files():
    temp_dir = 'temp_videos'
    if os.path.exists(temp_dir):
        for file in os.listdir(temp_dir):
            file_path = os.path.join(temp_dir, file)
            try:
                if os.path.isfile(file_path):
                    os.unlink(file_path)
            except Exception as e:
                print(f"Error: {e}")