File size: 7,568 Bytes
069af97
6097f87
90dff8a
87303e5
90dff8a
f5e8a49
90dff8a
 
 
192d4c3
9846923
f0f6ac7
 
691b922
 
bdb3f22
f9b1ae8
90dff8a
d1b6fc5
33428af
 
 
90dff8a
d88c7e7
 
 
f0f6ac7
d1b6fc5
d88c7e7
d1b6fc5
f0f6ac7
 
 
 
 
 
 
 
 
d1b6fc5
f0f6ac7
 
 
 
d1b6fc5
 
c0f5c8c
d1b6fc5
c0f5c8c
f0f6ac7
 
33428af
 
 
9846923
33428af
 
 
 
 
 
 
 
 
1115063
33428af
 
90dff8a
65a9702
bafb131
90dff8a
6bcace2
65a9702
bafb131
 
90dff8a
bafb131
 
c31ee40
90dff8a
f5e8a49
01cbe49
 
23ff2b1
79e5fc0
d1b6fc5
 
 
79e5fc0
9fc3eba
 
d1b6fc5
 
 
6097f87
7963d98
 
cf4ffba
 
 
918bcce
 
9fc3eba
691b922
cf4ffba
7963d98
c25bcaf
 
 
 
 
 
cf4ffba
72a3e3b
cf4ffba
72a3e3b
79e5fc0
 
d1b6fc5
79e5fc0
d1b6fc5
 
 
 
 
 
7963d98
c25bcaf
 
d1b6fc5
c25bcaf
d1b6fc5
 
 
 
 
 
 
 
 
 
7963d98
d1b6fc5
 
 
 
 
 
 
 
 
 
d594b35
7963d98
d1b6fc5
 
7963d98
d1b6fc5
7963d98
da8565f
b5ce577
da8565f
 
c31ee40
 
da8565f
01cbe49
 
 
c31ee40
90dff8a
9846923
 
 
 
 
 
a4f5085
9846923
 
01cbe49
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

import os
import cv2
from scenedetect import VideoManager, SceneManager
from scenedetect.detectors import ContentDetector
from moviepy.editor import VideoFileClip
from transformers import CLIPProcessor, CLIPModel
import torch
import yt_dlp
from PIL import Image
import uuid
from torchvision import models, transforms
from torch.nn import functional as F
import numpy as np


categories = ["Joy", "Trust", "Fear", "Surprise", "Sadness", "Disgust", "Anger", "Anticipation"]


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

# Load ResNet-50 model
resnet50 = models.resnet50(pretrained=True)
resnet50.eval().to(device)


def classify_frame(frame):
    # Preprocess the image
    preprocess = transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])
    input_tensor = preprocess(Image.fromarray(frame))
    input_batch = input_tensor.unsqueeze(0).to(device)

    # Predict with ResNet-50
    with torch.no_grad():
        output = resnet50(input_batch)
        probabilities = F.softmax(output[0], dim=0)

    # Create a numpy array from the probabilities of the categories
    # This example assumes each category is mapped to a model output directly
    results_array = np.array([probabilities[i].item() for i in range(len(categories))])

    return results_array


def download_video(url):
    ydl_opts = {
        'format': 'bestvideo[height<=1440]+bestaudio/best[height<=1440]',
        'outtmpl': f'temp_videos/{uuid.uuid4()}_video.%(ext)s',
        'merge_output_format': 'mp4',
    }
    with yt_dlp.YoutubeDL(ydl_opts) as ydl:
        result = ydl.extract_info(url, download=True)
        video_filename = ydl.prepare_filename(result)
        safe_filename = sanitize_filename(video_filename)
        if os.path.exists(video_filename) and video_filename != safe_filename:
            os.rename(video_filename, safe_filename)
        return safe_filename

def sanitize_filename(filename):
    return "".join([c if c.isalnum() or c in " .-_()" else "_" for c in filename])

def find_scenes(video_path):
    video_manager = VideoManager([video_path])
    scene_manager = SceneManager()
    scene_manager.add_detector(ContentDetector(threshold=33))  # Adjusted threshold for finer segmentation
    video_manager.set_downscale_factor()
    video_manager.start()
    scene_manager.detect_scenes(frame_source=video_manager)
    scene_list = scene_manager.get_scene_list()
    video_manager.release()
    scenes = [(start.get_timecode(), end.get_timecode()) for start, end in scene_list]
    return scenes

def convert_timestamp_to_seconds(timestamp):
    h, m, s = map(float, timestamp.split(':'))
    return int(h) * 3600 + int(m) * 60 + s

def extract_frames(video, start_time, end_time):
    frames = []
    start_seconds = convert_timestamp_to_seconds(start_time)
    end_seconds = convert_timestamp_to_seconds(end_time)
    video_clip = video.subclip(start_seconds, end_seconds)

    for frame_time in range(0, int(video_clip.duration * video_clip.fps), int(video_clip.fps / 3)):
        frame = video_clip.get_frame(frame_time / video_clip.fps)
        frames.append(frame)
    return frames

def analyze_scenes(video_path, scenes, description):
    scene_scores = []
    negative_descriptions = [
        "black screen",
        "Intro text for a video",
        "dark scene without much contrast",
        "No people are in this scene",
        #"A still shot of natural scenery",
        #"Still-camera shot of a person's face"
    ]

    preprocess = transforms.Compose([
        transforms.ToTensor(),  # Directly convert numpy arrays to tensors
        transforms.Resize((224, 224)),  # Resize the tensor
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # Normalize the tensor
    ])

    text_inputs = processor(text=[description] + negative_descriptions, return_tensors="pt", padding=True).to(device)
    text_features = model.get_text_features(**text_inputs).detach()
    positive_feature, negative_features = text_features[0], text_features[1:]

    video = VideoFileClip(video_path)

    for scene_num, (start_time, end_time) in enumerate(scenes):
        frames = extract_frames(video, start_time, end_time)
        if not frames:
            print(f"Scene {scene_num + 1}: Start={start_time}, End={end_time} - No frames extracted")
            continue

        scene_prob = 0.0
        sentiment_distributions = np.zeros(8)  # Assuming there are 8 sentiments
        for frame in frames:
            # Directly preprocess the frame
            frame_tensor = preprocess(frame).unsqueeze(0).to(device)  # Add batch dimension and send to device
            with torch.no_grad():
                image_features = model.get_image_features(pixel_values=frame_tensor).detach()
                positive_similarity = torch.cosine_similarity(image_features, positive_feature.unsqueeze(0)).squeeze().item()
                negative_similarities = torch.cosine_similarity(image_features, negative_features).squeeze().mean().item()
                scene_prob += positive_similarity - negative_similarities
            
            frame_sentiments = classify_frame(frame)
            sentiment_distributions += np.array(frame_sentiments)

        sentiment_distributions /= len(frames)  # Normalize to get average probabilities
        sentiment_percentages = {category: round(prob * 100, 2) for category, prob in zip(categories, sentiment_distributions)}
        scene_prob /= len(frames)
        scene_duration = convert_timestamp_to_seconds(end_time) - convert_timestamp_to_seconds(start_time)
        print(f"Scene {scene_num + 1}: Start={start_time}, End={end_time}, Probability={scene_prob}, Duration={scene_duration}, Sentiments: {sentiment_percentages}")

        scene_scores.append((scene_prob, start_time, end_time, scene_duration, sentiment_percentages))

        # Sort scenes by confidence, highest first
        scene_scores.sort(reverse=True, key=lambda x: x[0])
        
        # Select the longest scene from the top 3 highest confidence scenes
        top_3_scenes = scene_scores[:3]  # Get the top 3 scenes
        best_scene = max(top_3_scenes, key=lambda x: x[3])  # Find the longest scene from these top 3

    if best_scene:
        print(f"Best Scene: Start={best_scene[1]}, End={best_scene[2]}, Probability={best_scene[0]}, Duration={best_scene[3]}, Sentiments: {best_scene[4]}")
        return (best_scene[1], best_scene[2]), best_scene[4]  # Returning a tuple with scene times and sentiments
    else:
        print("No suitable scene found")
        return None, {}


def extract_best_scene(video_path, scene):
    if scene is None:
        return None

    start_time, end_time = scene
    start_seconds = convert_timestamp_to_seconds(start_time)
    end_seconds = convert_timestamp_to_seconds(end_time)
    video_clip = VideoFileClip(video_path).subclip(start_seconds, end_seconds)
    return video_clip

def cleanup_temp_files():
    temp_dir = 'temp_videos'
    if os.path.exists(temp_dir):
        for file in os.listdir(temp_dir):
            file_path = os.path.join(temp_dir, file)
            try:
                if os.path.isfile(file_path):
                    os.unlink(file_path)
            except Exception as e:
                print(f"Error: {e}")