Spaces:
Sleeping
Sleeping
File size: 9,514 Bytes
6097f87 90dff8a 87303e5 90dff8a f5e8a49 90dff8a 192d4c3 9846923 f0f6ac7 f9b1ae8 4df7b58 e6aaed9 35f9210 e6aaed9 35f9210 f0f6ac7 bdb3f22 f9b1ae8 90dff8a f9b1ae8 33428af 90dff8a f9b1ae8 c0981f1 f0f6ac7 f9b1ae8 35f9210 f0f6ac7 4df7b58 c0981f1 f0f6ac7 c0981f1 f0f6ac7 c0f5c8c f0f6ac7 33428af 9846923 33428af 1115063 33428af 90dff8a f5e8a49 bafb131 90dff8a 01cbe49 bafb131 90dff8a bafb131 c31ee40 90dff8a f5e8a49 01cbe49 23ff2b1 44fd805 35f9210 44fd805 35f9210 44fd805 35f9210 c31ee40 6097f87 35f9210 cf4ffba 918bcce cf4ffba 72a3e3b cf4ffba 72a3e3b 35f9210 c31ee40 35f9210 da8565f e687cbf 01cbe49 35f9210 da8565f 35f9210 da8565f b5ce577 35f9210 b5ce577 35f9210 d594b35 35f9210 d594b35 35f9210 da8565f b5ce577 da8565f c31ee40 da8565f 01cbe49 c31ee40 90dff8a 01cbe49 33428af c31ee40 a8fc1f2 c31ee40 a8fc1f2 c31ee40 9846923 c31ee40 9846923 c31ee40 a8fc1f2 c31ee40 72a3e3b a8fc1f2 9846923 a4f5085 9846923 01cbe49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import os
import cv2
from scenedetect import VideoManager, SceneManager
from scenedetect.detectors import ContentDetector
from moviepy.editor import VideoFileClip
from transformers import CLIPProcessor, CLIPModel
import torch
import yt_dlp
from PIL import Image
import uuid
from torchvision import models, transforms
from torch.nn import functional as F
from cachetools import cached, TTLCache
import numpy as np
import logging
from multiprocessing import Pool
# Setup basic logging
#logging.basicConfig(level=logging.INFO)
categories = ["Joy", "Trust", "Fear", "Surprise", "Sadness", "Disgust", "Anger", "Anticipation"]
#initializing CLIP
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
#initializing ZG placeholder
resnet50 = models.resnet50(pretrained=True).eval().to(device)
#initialize caches
#scene_cache = TTLCache(maxsize=100, ttl=86400) # cache up to 100 items, each for 1 day
#frame_cache = TTLCache(maxsize=1000, ttl=86400)
#analysis_cache = TTLCache(maxsize=1000, ttl=86400)
def cache_info_decorator(func, cache):
"""Decorator to add caching and logging to a function."""
key_func = lambda *args, **kwargs: "_".join(map(str, args)) # Simple key func based on str(args)
@cached(cache, key=key_func)
def wrapper(*args, **kwargs):
key = key_func(*args, **kwargs)
if key in cache:
logging.info(f"Cache hit for key: {key}")
else:
logging.info(f"Cache miss for key: {key}. Caching result.")
return func(*args, **kwargs)
return wrapper
def classify_frame(frame):
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(Image.fromarray(frame))
input_batch = input_tensor.unsqueeze(0).to(device)
# Use the globally loaded ResNet-50 model
with torch.no_grad():
output = resnet50(input_batch)
probabilities = F.softmax(output[0], dim=0)
results_array = np.array([probabilities[i].item() for i in range(len(categories))])
return results_array
def download_video(url):
ydl_opts = {
'format': 'bestvideo[height<=1440]+bestaudio/best[height<=1440]',
'outtmpl': f'temp_videos/{uuid.uuid4()}_video.%(ext)s',
'merge_output_format': 'mp4',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
result = ydl.extract_info(url, download=True)
video_filename = ydl.prepare_filename(result)
safe_filename = sanitize_filename(video_filename)
if os.path.exists(video_filename) and video_filename != safe_filename:
os.rename(video_filename, safe_filename)
return safe_filename
def sanitize_filename(filename):
return "".join([c if c.isalnum() or c in " .-_()" else "_" for c in filename])
def find_scenes(video_path):
video_manager = VideoManager([video_path])
scene_manager = SceneManager()
scene_manager.add_detector(ContentDetector(threshold=33)) # Adjusted threshold for finer segmentation
video_manager.set_downscale_factor()
video_manager.start()
scene_manager.detect_scenes(frame_source=video_manager)
scene_list = scene_manager.get_scene_list()
video_manager.release()
scenes = [(start.get_timecode(), end.get_timecode()) for start, end in scene_list]
return scenes
def convert_timestamp_to_seconds(timestamp):
h, m, s = map(float, timestamp.split(':'))
return int(h) * 3600 + int(m) * 60 + s
def extract_frame_at_time(args):
video_clip, t = args
return video_clip.get_frame(t / video_clip.fps)
def extract_frames(video_path, start_time, end_time):
video_clip = VideoFileClip(video_path).subclip(start_time, end_time)
frame_times = range(0, int(video_clip.duration * video_clip.fps), int(video_clip.fps / 10))
# Create a pool of workers to extract frames in parallel
with Pool() as pool:
# We need to pass video_clip and t to the function, wrap in tuple
frames = pool.map(extract_frame_at_time, ((video_clip, t) for t in frame_times))
return frames
def analyze_scene(params):
video_path, start_time, end_time, description = params
frames = extract_frames(video_path, start_time, end_time)
if not frames:
print(f"Scene: Start={start_time}, End={end_time} - No frames extracted")
return (start_time, end_time, None) # Adjust as needed for error handling
scene_prob = 0.0
sentiment_distributions = np.zeros(8) # Assuming there are 8 sentiments
# Preparing text inputs and features once per scene
negative_descriptions = [
"black screen",
"Intro text for a video",
"dark scene without much contrast",
"No people are in this scene",
"A still shot of natural scenery",
"Still-camera shot of a person's face"
]
text_inputs = processor(text=[description] + negative_descriptions, return_tensors="pt", padding=True).to(device)
text_features = model.get_text_features(**text_inputs).detach()
positive_feature, negative_features = text_features[0], text_features[1:]
for frame in frames:
image = Image.fromarray(frame[..., ::-1])
image_input = processor(images=image, return_tensors="pt").to(device)
with torch.no_grad():
image_features = model.get_image_features(**image_input).detach()
positive_similarity = torch.cosine_similarity(image_features, positive_feature.unsqueeze(0)).squeeze().item()
negative_similarities = torch.cosine_similarity(image_features, negative_features).squeeze().mean().item()
scene_prob += positive_similarity - negative_similarities
frame_sentiments = classify_frame(frame)
sentiment_distributions += np.array(frame_sentiments)
if len(frames) > 0:
sentiment_distributions /= len(frames) # Normalize to get average probabilities
sentiment_percentages = {category: round(prob * 100, 2) for category, prob in zip(categories, sentiment_distributions)}
scene_prob /= len(frames)
scene_duration = convert_timestamp_to_seconds(end_time) - convert_timestamp_to_seconds(start_time)
print(f"Scene: Start={start_time}, End={end_time}, Probability={scene_prob}, Duration={scene_duration}, Sentiments: {sentiment_percentages}")
return (start_time, end_time, scene_prob, scene_duration, sentiment_percentages)
return (start_time, end_time, None) # Adjust as needed for error handling
from concurrent.futures import ProcessPoolExecutor
def analyze_scenes(video_path, scenes, description):
scene_params = [(video_path, start, end, description) for start, end in scenes]
# Use ProcessPoolExecutor to handle multiprocessing
with ProcessPoolExecutor() as executor:
results = list(executor.map(analyze_scene, scene_params))
# Process results to find the best scene
scene_scores = [result for result in results if result[2] is not None] # Filter out scenes with no data
if scene_scores:
scene_scores.sort(reverse=True, key=lambda x: x[2]) # Sort scenes by confidence, highest first
top_3_scenes = scene_scores[:3] # Get the top 3 scenes
best_scene = max(top_3_scenes, key=lambda x: x[3]) # Find the longest scene from these top 3
if best_scene:
print(f"Best Scene: Start={best_scene[0]}, End={best_scene[1]}, Probability={best_scene[2]}, Duration={best_scene[3]}, Sentiments: {best_scene[4]}")
return (best_scene[0], best_scene[1]), best_scene[4] # Returning a tuple with scene times and sentiments
print("No suitable scene found")
return None, {}
def extract_best_scene(video_path, scene):
if scene is None:
return None
start_time, end_time = scene
start_seconds = convert_timestamp_to_seconds(start_time)
end_seconds = convert_timestamp_to_seconds(end_time)
video_clip = VideoFileClip(video_path).subclip(start_seconds, end_seconds)
return video_clip
def process_video(video_url, description):
video_path = download_video(video_url)
scenes = find_scenes(video_path)
best_scene = analyze_scenes(video_path, scenes, description)
final_clip = extract_best_scene(video_path, best_scene)
if final_clip:
# Assuming final_clip is a MoviePy VideoFileClip object
frame = np.array(final_clip.get_frame(0)) # Get the first frame at t=0 seconds
frame_classification = classify_frame(frame) # Classify the frame
print("Frame classification probabilities:", frame_classification)
output_dir = "output"
os.makedirs(output_dir, exist_ok=True)
final_clip_path = os.path.join(output_dir, f"{uuid.uuid4()}_final_clip.mp4")
final_clip.write_videofile(final_clip_path, codec='libx264', audio_codec='aac')
cleanup_temp_files()
return final_clip_path
return None
def cleanup_temp_files():
temp_dir = 'temp_videos'
if os.path.exists(temp_dir):
for file in os.listdir(temp_dir):
file_path = os.path.join(temp_dir, file)
try:
if os.path.isfile(file_path):
os.unlink(file_path)
except Exception as e:
print(f"Error: {e}") |