File size: 9,514 Bytes
6097f87
90dff8a
87303e5
90dff8a
f5e8a49
90dff8a
 
 
192d4c3
9846923
f0f6ac7
 
f9b1ae8
4df7b58
e6aaed9
35f9210
 
e6aaed9
 
35f9210
f0f6ac7
bdb3f22
f9b1ae8
90dff8a
f9b1ae8
33428af
 
 
90dff8a
f9b1ae8
c0981f1
f0f6ac7
f9b1ae8
35f9210
 
 
f0f6ac7
4df7b58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0981f1
f0f6ac7
 
 
 
 
 
 
 
 
c0981f1
f0f6ac7
 
 
 
c0f5c8c
 
f0f6ac7
 
33428af
 
 
9846923
33428af
 
 
 
 
 
 
 
 
1115063
33428af
 
90dff8a
f5e8a49
bafb131
90dff8a
01cbe49
 
bafb131
 
90dff8a
bafb131
 
c31ee40
90dff8a
f5e8a49
01cbe49
 
23ff2b1
44fd805
 
 
35f9210
44fd805
 
35f9210
 
 
 
44fd805
 
35f9210
c31ee40
6097f87
35f9210
 
 
 
 
 
 
 
 
 
 
cf4ffba
 
 
918bcce
 
 
 
cf4ffba
 
72a3e3b
cf4ffba
72a3e3b
35f9210
 
 
 
 
 
 
 
 
 
 
c31ee40
35f9210
da8565f
 
e687cbf
01cbe49
35f9210
 
da8565f
35f9210
da8565f
b5ce577
 
35f9210
 
b5ce577
 
 
 
 
35f9210
 
 
 
d594b35
 
35f9210
 
 
d594b35
35f9210
 
da8565f
 
b5ce577
da8565f
 
c31ee40
 
da8565f
01cbe49
 
 
c31ee40
90dff8a
01cbe49
 
33428af
c31ee40
 
a8fc1f2
c31ee40
a8fc1f2
 
 
 
 
c31ee40
 
9846923
c31ee40
9846923
c31ee40
a8fc1f2
c31ee40
72a3e3b
a8fc1f2
9846923
 
 
 
 
 
a4f5085
9846923
 
01cbe49
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import cv2
from scenedetect import VideoManager, SceneManager
from scenedetect.detectors import ContentDetector
from moviepy.editor import VideoFileClip
from transformers import CLIPProcessor, CLIPModel
import torch
import yt_dlp
from PIL import Image
import uuid
from torchvision import models, transforms
from torch.nn import functional as F
from cachetools import cached, TTLCache
import numpy as np
import logging
from multiprocessing import Pool


# Setup basic logging
#logging.basicConfig(level=logging.INFO)


categories = ["Joy", "Trust", "Fear", "Surprise", "Sadness", "Disgust", "Anger", "Anticipation"]

#initializing CLIP
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

#initializing ZG placeholder
resnet50 = models.resnet50(pretrained=True).eval().to(device)

#initialize caches
#scene_cache = TTLCache(maxsize=100, ttl=86400)  # cache up to 100 items, each for 1 day
#frame_cache = TTLCache(maxsize=1000, ttl=86400)
#analysis_cache = TTLCache(maxsize=1000, ttl=86400)


def cache_info_decorator(func, cache):
    """Decorator to add caching and logging to a function."""
    key_func = lambda *args, **kwargs: "_".join(map(str, args))  # Simple key func based on str(args)

    @cached(cache, key=key_func)
    def wrapper(*args, **kwargs):
        key = key_func(*args, **kwargs)
        if key in cache:
            logging.info(f"Cache hit for key: {key}")
        else:
            logging.info(f"Cache miss for key: {key}. Caching result.")
        return func(*args, **kwargs)
    return wrapper

    
def classify_frame(frame):
    preprocess = transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])
    input_tensor = preprocess(Image.fromarray(frame))
    input_batch = input_tensor.unsqueeze(0).to(device)

    # Use the globally loaded ResNet-50 model
    with torch.no_grad():
        output = resnet50(input_batch)
        probabilities = F.softmax(output[0], dim=0)

    results_array = np.array([probabilities[i].item() for i in range(len(categories))])
    return results_array


def download_video(url):
    ydl_opts = {
        'format': 'bestvideo[height<=1440]+bestaudio/best[height<=1440]',
        'outtmpl': f'temp_videos/{uuid.uuid4()}_video.%(ext)s',
        'merge_output_format': 'mp4',
    }
    with yt_dlp.YoutubeDL(ydl_opts) as ydl:
        result = ydl.extract_info(url, download=True)
        video_filename = ydl.prepare_filename(result)
        safe_filename = sanitize_filename(video_filename)
        if os.path.exists(video_filename) and video_filename != safe_filename:
            os.rename(video_filename, safe_filename)
        return safe_filename

def sanitize_filename(filename):
    return "".join([c if c.isalnum() or c in " .-_()" else "_" for c in filename])

def find_scenes(video_path):
    video_manager = VideoManager([video_path])
    scene_manager = SceneManager()
    scene_manager.add_detector(ContentDetector(threshold=33))  # Adjusted threshold for finer segmentation
    video_manager.set_downscale_factor()
    video_manager.start()
    scene_manager.detect_scenes(frame_source=video_manager)
    scene_list = scene_manager.get_scene_list()
    video_manager.release()
    scenes = [(start.get_timecode(), end.get_timecode()) for start, end in scene_list]
    return scenes

def convert_timestamp_to_seconds(timestamp):
    h, m, s = map(float, timestamp.split(':'))
    return int(h) * 3600 + int(m) * 60 + s

def extract_frame_at_time(args):
    video_clip, t = args
    return video_clip.get_frame(t / video_clip.fps)

def extract_frames(video_path, start_time, end_time):
    video_clip = VideoFileClip(video_path).subclip(start_time, end_time)
    frame_times = range(0, int(video_clip.duration * video_clip.fps), int(video_clip.fps / 10))
    
    # Create a pool of workers to extract frames in parallel
    with Pool() as pool:
        # We need to pass video_clip and t to the function, wrap in tuple
        frames = pool.map(extract_frame_at_time, ((video_clip, t) for t in frame_times))

    return frames

def analyze_scene(params):
    video_path, start_time, end_time, description = params
    frames = extract_frames(video_path, start_time, end_time)
    if not frames:
        print(f"Scene: Start={start_time}, End={end_time} - No frames extracted")
        return (start_time, end_time, None)  # Adjust as needed for error handling

    scene_prob = 0.0
    sentiment_distributions = np.zeros(8)  # Assuming there are 8 sentiments

    # Preparing text inputs and features once per scene
    negative_descriptions = [
        "black screen",
        "Intro text for a video",
        "dark scene without much contrast",
        "No people are in this scene",
        "A still shot of natural scenery",
        "Still-camera shot of a person's face"
    ]
    text_inputs = processor(text=[description] + negative_descriptions, return_tensors="pt", padding=True).to(device)
    text_features = model.get_text_features(**text_inputs).detach()
    positive_feature, negative_features = text_features[0], text_features[1:]

    for frame in frames:
        image = Image.fromarray(frame[..., ::-1])
        image_input = processor(images=image, return_tensors="pt").to(device)
        with torch.no_grad():
            image_features = model.get_image_features(**image_input).detach()
            positive_similarity = torch.cosine_similarity(image_features, positive_feature.unsqueeze(0)).squeeze().item()
            negative_similarities = torch.cosine_similarity(image_features, negative_features).squeeze().mean().item()
            scene_prob += positive_similarity - negative_similarities
        
        frame_sentiments = classify_frame(frame)
        sentiment_distributions += np.array(frame_sentiments)

    if len(frames) > 0:
        sentiment_distributions /= len(frames)  # Normalize to get average probabilities
        sentiment_percentages = {category: round(prob * 100, 2) for category, prob in zip(categories, sentiment_distributions)}
        scene_prob /= len(frames)
        scene_duration = convert_timestamp_to_seconds(end_time) - convert_timestamp_to_seconds(start_time)
        print(f"Scene: Start={start_time}, End={end_time}, Probability={scene_prob}, Duration={scene_duration}, Sentiments: {sentiment_percentages}")
        return (start_time, end_time, scene_prob, scene_duration, sentiment_percentages)

    return (start_time, end_time, None)  # Adjust as needed for error handling

from concurrent.futures import ProcessPoolExecutor

def analyze_scenes(video_path, scenes, description):
    scene_params = [(video_path, start, end, description) for start, end in scenes]

    # Use ProcessPoolExecutor to handle multiprocessing
    with ProcessPoolExecutor() as executor:
        results = list(executor.map(analyze_scene, scene_params))

    # Process results to find the best scene
    scene_scores = [result for result in results if result[2] is not None]  # Filter out scenes with no data
    if scene_scores:
        scene_scores.sort(reverse=True, key=lambda x: x[2])  # Sort scenes by confidence, highest first
        top_3_scenes = scene_scores[:3]  # Get the top 3 scenes
        best_scene = max(top_3_scenes, key=lambda x: x[3])  # Find the longest scene from these top 3
        if best_scene:
            print(f"Best Scene: Start={best_scene[0]}, End={best_scene[1]}, Probability={best_scene[2]}, Duration={best_scene[3]}, Sentiments: {best_scene[4]}")
            return (best_scene[0], best_scene[1]), best_scene[4]  # Returning a tuple with scene times and sentiments

    print("No suitable scene found")
    return None, {}



def extract_best_scene(video_path, scene):
    if scene is None:
        return None

    start_time, end_time = scene
    start_seconds = convert_timestamp_to_seconds(start_time)
    end_seconds = convert_timestamp_to_seconds(end_time)
    video_clip = VideoFileClip(video_path).subclip(start_seconds, end_seconds)
    return video_clip

def process_video(video_url, description):
    video_path = download_video(video_url)
    scenes = find_scenes(video_path)
    best_scene = analyze_scenes(video_path, scenes, description)
    final_clip = extract_best_scene(video_path, best_scene)

    if final_clip:
        # Assuming final_clip is a MoviePy VideoFileClip object
        frame = np.array(final_clip.get_frame(0))  # Get the first frame at t=0 seconds
        frame_classification = classify_frame(frame)  # Classify the frame
        print("Frame classification probabilities:", frame_classification)

        output_dir = "output"
        os.makedirs(output_dir, exist_ok=True)
        final_clip_path = os.path.join(output_dir, f"{uuid.uuid4()}_final_clip.mp4")
        final_clip.write_videofile(final_clip_path, codec='libx264', audio_codec='aac')
        cleanup_temp_files()
        return final_clip_path

    return None


def cleanup_temp_files():
    temp_dir = 'temp_videos'
    if os.path.exists(temp_dir):
        for file in os.listdir(temp_dir):
            file_path = os.path.join(temp_dir, file)
            try:
                if os.path.isfile(file_path):
                    os.unlink(file_path)
            except Exception as e:
                print(f"Error: {e}")