Spaces:
Sleeping
Sleeping
import gradio as gr | |
import audiospeechsentimentanalysis_jrmdiouf as assaj | |
def find_sentiment(input): | |
return assaj.get_audio_sentiment(input) | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
"<h1 style='text-align: center;'>CUSTOM MODEL BASED ON WAV2VEC2 AND BERT BASE TO ANALYZE SPEECH SENTIMENT</h1>" | |
) | |
gr.Interface( | |
fn=find_sentiment, | |
inputs=[gr.Audio(type="filepath")], | |
outputs=["text"], | |
live=False, | |
) | |
gr.Markdown( | |
"<h2 style='text-align: center;'>Speech sentiment analysis model loss during training and eval time</h2>" | |
) | |
with gr.Row(): | |
gr.Image(value="wandb_chart_train.png", label="Training Loss", width=300) | |
gr.Image(value="wandb_chart_eval.png", label="Pipeline eval Loss", width=300) | |
gr.Markdown( | |
"<h2 style='text-align: center;'>Confusion matrix obtained from model evaluation on VoxCeleb dataset</h2>" | |
) | |
with gr.Row(): | |
gr.Image( | |
value="SpeechSentimentModelConfusionMatrix.png", | |
label="Confusion Matrix from model evaluation", | |
) | |
with gr.Row(): | |
gr.Markdown( | |
"<h3><span style='text-decoration:underline;'>Pipeline Accuracy</span> : <span style='font-style:italic;'>0.758</span></h3>" | |
) | |
demo.launch(share=True) | |