import gradio as gr import audiospeechsentimentanalysis_jrmdiouf as assaj def find_sentiment(input): return assaj.get_audio_sentiment(input) with gr.Blocks() as demo: gr.Markdown( "

CUSTOM MODEL BASED ON WAV2VEC2 AND BERT BASE TO ANALYZE SPEECH SENTIMENT

" ) gr.Interface( fn=find_sentiment, inputs=[gr.Audio(type="filepath")], outputs=["text"], live=False, ) gr.Markdown( "

Speech sentiment analysis model loss during training and eval time

" ) with gr.Row(): gr.Image(value="wandb_chart_train.png", label="Training Loss", width=300) gr.Image(value="wandb_chart_eval.png", label="Pipeline eval Loss", width=300) gr.Markdown( "

Confusion matrix obtained from model evaluation on VoxCeleb dataset

" ) with gr.Row(): gr.Image( value="SpeechSentimentModelConfusionMatrix.png", label="Confusion Matrix from model evaluation", ) with gr.Row(): gr.Markdown( "

Pipeline Accuracy : 0.758

" ) demo.launch(share=True)