Spaces:
Sleeping
Sleeping
File size: 1,309 Bytes
200202c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
import audiospeechsentimentanalysis_jrmdiouf as assaj
def find_sentiment(input):
return assaj.get_audio_sentiment(input)
with gr.Blocks() as demo:
gr.Markdown(
"<h1 style='text-align: center;'>CUSTOM MODEL BASED ON WAV2VEC2 AND BERT BASE TO ANALYZE SPEECH SENTIMENT</h1>"
)
gr.Interface(
fn=find_sentiment,
inputs=[gr.Audio(type="filepath")],
outputs=["text"],
live=False,
)
gr.Markdown(
"<h2 style='text-align: center;'>Speech sentiment analysis model loss during training and eval time</h2>"
)
with gr.Row():
gr.Image(value="wandb_chart_train.png", label="Training Loss", width=300)
gr.Image(value="wandb_chart_eval.png", label="Pipeline eval Loss", width=300)
gr.Markdown(
"<h2 style='text-align: center;'>Confusion matrix obtained from model evaluation on VoxCeleb dataset</h2>"
)
with gr.Row():
gr.Image(
value="SpeechSentimentModelConfusionMatrix.png",
label="Confusion Matrix from model evaluation",
)
with gr.Row():
gr.Markdown(
"<h3><span style='text-decoration:underline;'>Pipeline Accuracy</span> : <span style='font-style:italic;'>0.758</span></h3>"
)
demo.launch(share=True)
|