Spaces:
Sleeping
Sleeping
Commit
·
200202c
0
Parent(s):
initial commit
Browse files- .gitattributes +5 -0
- .gitignore +2 -0
- SpeechSentimentModelConfusionMatrix.png +3 -0
- audiospeechsentimentanalysis_jrmdiouf.py +650 -0
- bert_tokenizer_local/special_tokens_map.json +7 -0
- bert_tokenizer_local/tokenizer.json +0 -0
- bert_tokenizer_local/tokenizer_config.json +56 -0
- bert_tokenizer_local/vocab.txt +0 -0
- categories.bin +3 -0
- custom_bert_model.bin +3 -0
- demo.py +46 -0
- demo_api_client.py +16 -0
- id10012_0AXjxNXiEzo_00001.flac +3 -0
- max_len.pkl +3 -0
- wandb_chart_eval.png +3 -0
- wandb_chart_train.png +3 -0
- wav2vec2_local/config.json +109 -0
- wav2vec2_local/model.safetensors +3 -0
- wav2vec2_local/preprocessor_config.json +10 -0
- wav2vec2_local/special_tokens_map.json +6 -0
- wav2vec2_local/tokenizer_config.json +51 -0
- wav2vec2_local/vocab.json +34 -0
.gitattributes
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.flac filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__
|
| 2 |
+
.gradio
|
SpeechSentimentModelConfusionMatrix.png
ADDED
|
Git LFS Details
|
audiospeechsentimentanalysis_jrmdiouf.py
ADDED
|
@@ -0,0 +1,650 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""AudioSpeechSentimentAnalysis_JRMDIOUF.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1tizgeMs7DXaZPQO3V253paATKev0ra0m
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
#!pip install transformers
|
| 11 |
+
#!pip install wandb
|
| 12 |
+
|
| 13 |
+
import os
|
| 14 |
+
|
| 15 |
+
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
| 16 |
+
|
| 17 |
+
import pickle
|
| 18 |
+
import re
|
| 19 |
+
from typing import DefaultDict
|
| 20 |
+
|
| 21 |
+
import matplotlib.pyplot as plt
|
| 22 |
+
import numpy as np
|
| 23 |
+
import pandas as pd
|
| 24 |
+
import seaborn as sns
|
| 25 |
+
import torch
|
| 26 |
+
import torch.nn as nn
|
| 27 |
+
import torch.optim as optim
|
| 28 |
+
import torchaudio
|
| 29 |
+
import torchaudio.functional as F
|
| 30 |
+
import wandb
|
| 31 |
+
|
| 32 |
+
# from google.colab import userdata
|
| 33 |
+
# from huggingface_hub import login
|
| 34 |
+
from sklearn.metrics import (
|
| 35 |
+
accuracy_score,
|
| 36 |
+
confusion_matrix,
|
| 37 |
+
precision_score,
|
| 38 |
+
recall_score,
|
| 39 |
+
)
|
| 40 |
+
from torch.utils.data import DataLoader, Dataset, Subset
|
| 41 |
+
from transformers import AutoTokenizer, BertModel, Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 42 |
+
|
| 43 |
+
"""hf_token = userdata.get("HF_TOKEN")
|
| 44 |
+
wandb_token = userdata.get("WAND_TOKEN")"""
|
| 45 |
+
|
| 46 |
+
# Commented out IPython magic to ensure Python compatibility.
|
| 47 |
+
# %env HF_TOKEN_ENV=$hf_token
|
| 48 |
+
"""!wget -nc --header "Authorization: Bearer ${HF_TOKEN_ENV}" https://huggingface.co/datasets/asapp/slue/resolve/main/data/voxceleb/dev.tsv
|
| 49 |
+
!wget -nc --header "Authorization: Bearer ${HF_TOKEN_ENV}" https://huggingface.co/datasets/asapp/slue/resolve/main/data/voxceleb/fine-tune.tsv
|
| 50 |
+
!wget -nc --header "Authorization: Bearer ${HF_TOKEN_ENV}" https://huggingface.co/datasets/asapp/slue/resolve/main/data/voxceleb/test.tsv
|
| 51 |
+
|
| 52 |
+
!wget -nc --header "Authorization: Bearer ${HF_TOKEN_ENV}" https://huggingface.co/datasets/asapp/slue/resolve/main/data/voxceleb/audio/dev.zip
|
| 53 |
+
!wget -nc --header "Authorization: Bearer ${HF_TOKEN_ENV}" https://huggingface.co/datasets/asapp/slue/resolve/main/data/voxceleb/audio/fine-tune.zip
|
| 54 |
+
!wget -nc --header "Authorization: Bearer ${HF_TOKEN_ENV}" https://huggingface.co/datasets/asapp/slue/resolve/main/data/voxceleb/audio/test.zip
|
| 55 |
+
|
| 56 |
+
if not os.path.exists("dev_raw"):
|
| 57 |
+
print("dev_raw folder not found. Unzipping dev.zip...")
|
| 58 |
+
!unzip -q dev.zip
|
| 59 |
+
else:
|
| 60 |
+
print("dev_raw folder already exists. Skipping unzip.")
|
| 61 |
+
|
| 62 |
+
if not os.path.exists("fine-tune_raw"):
|
| 63 |
+
print("fine-tune_raw folder not found. Unzipping fine-tune.zip...")
|
| 64 |
+
!unzip -q fine-tune.zip
|
| 65 |
+
else:
|
| 66 |
+
print("fine-tune_raw folder already exists. Skipping unzip.")
|
| 67 |
+
|
| 68 |
+
if not os.path.exists("test_raw"):
|
| 69 |
+
print("test_raw folder not found. Unzipping test.zip...")
|
| 70 |
+
!unzip -q test.zip
|
| 71 |
+
else:
|
| 72 |
+
print("test_raw folder already exists. Skipping unzip.")"""
|
| 73 |
+
|
| 74 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 75 |
+
NUM_EPOCHS = 5
|
| 76 |
+
BATCH_SIZE = 16
|
| 77 |
+
|
| 78 |
+
SAVED_CUSTOM_BERT_TOKEN_MAX_LEN_PATH = "max_len.pkl"
|
| 79 |
+
SAVED_CUSTOM_BERT_TOKENIZER_DIR = "bert_tokenizer_local"
|
| 80 |
+
SAVED_CUSTOM_BERT_MODEL_PATH = "custom_bert_model.bin"
|
| 81 |
+
SAVED_TARGET_CAT_PATH = "categories.bin"
|
| 82 |
+
TRAIN_DS_PATH = "fine-tune.tsv"
|
| 83 |
+
TEST_DS_PATH = "test.tsv"
|
| 84 |
+
BERT_BASE_MODEL = "google-bert/bert-base-uncased"
|
| 85 |
+
INTERMEDIATE_CUSTOM_BERT_LAYER_SIZE = 30
|
| 86 |
+
|
| 87 |
+
SAVED_AUDIO_MODEL_DIR_PATH = "wav2vec2_local"
|
| 88 |
+
AUDIO_BASE_MODEL = "facebook/wav2vec2-base-960h"
|
| 89 |
+
PROCESSOR_NAME = "preprocessor_config.json"
|
| 90 |
+
MODEL_NAME = "config.json"
|
| 91 |
+
|
| 92 |
+
SENTIMENT_MODALITIES = ["Neutral", "Positive", "Negative"]
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
class CustomBertDataset(Dataset):
|
| 96 |
+
def __init__(
|
| 97 |
+
self,
|
| 98 |
+
file_path,
|
| 99 |
+
audio_folder,
|
| 100 |
+
model_path=BERT_BASE_MODEL,
|
| 101 |
+
saved_target_cats_path=SAVED_TARGET_CAT_PATH,
|
| 102 |
+
saved_max_len_path=SAVED_CUSTOM_BERT_TOKEN_MAX_LEN_PATH,
|
| 103 |
+
):
|
| 104 |
+
self.model_path = model_path
|
| 105 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
|
| 106 |
+
self.lines = open(file_path).readlines()
|
| 107 |
+
self.lines = np.array(
|
| 108 |
+
[
|
| 109 |
+
[
|
| 110 |
+
re.split(r"\t+", line.replace("\n", ""))[1],
|
| 111 |
+
re.split(r"\t+", line.replace("\n", ""))[4],
|
| 112 |
+
re.split(r"\t+", line.replace("\n", ""))[0],
|
| 113 |
+
]
|
| 114 |
+
for i, line in enumerate(self.lines)
|
| 115 |
+
if line != "\n" and i != 0
|
| 116 |
+
]
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
self.elem_cats = self.lines[:, 1]
|
| 120 |
+
self.corpus = self.lines[:, 0]
|
| 121 |
+
self.audio_files_id = self.lines[:, 2]
|
| 122 |
+
|
| 123 |
+
# We have to proceed in this order here
|
| 124 |
+
self.corpus = [
|
| 125 |
+
sent.lower()
|
| 126 |
+
for sent, cat in zip(self.corpus, self.elem_cats)
|
| 127 |
+
if cat in SENTIMENT_MODALITIES
|
| 128 |
+
]
|
| 129 |
+
self.audio_files = np.array(
|
| 130 |
+
[
|
| 131 |
+
os.path.join(audio_folder, f"{file_name}.flac")
|
| 132 |
+
for file_name, cat in zip(self.audio_files_id, self.elem_cats)
|
| 133 |
+
if cat in SENTIMENT_MODALITIES
|
| 134 |
+
]
|
| 135 |
+
)
|
| 136 |
+
self.elem_cats = [cat for cat in self.elem_cats if cat in SENTIMENT_MODALITIES]
|
| 137 |
+
|
| 138 |
+
self.unique_cats = sorted(list(set(self.elem_cats)))
|
| 139 |
+
self.num_class = len(self.unique_cats)
|
| 140 |
+
self.cats_dict = {cat: i for i, cat in enumerate(self.unique_cats)}
|
| 141 |
+
self.targets = np.array([self.cats_dict[cat] for cat in self.elem_cats])
|
| 142 |
+
|
| 143 |
+
torch.save(self.unique_cats, saved_target_cats_path)
|
| 144 |
+
self.tokenizer.save_pretrained(SAVED_CUSTOM_BERT_TOKENIZER_DIR)
|
| 145 |
+
|
| 146 |
+
"""entry_dict = DefaultDict(list)
|
| 147 |
+
for i in range(len(self.corpus)):
|
| 148 |
+
entry_dict[self.targets[i]].append(self.corpus[i])
|
| 149 |
+
|
| 150 |
+
self.final_corpus = []
|
| 151 |
+
self.final_targets = []
|
| 152 |
+
n=0
|
| 153 |
+
while n < len(self.corpus):
|
| 154 |
+
for key in entry_dict.keys():
|
| 155 |
+
if len(entry_dict[key]) > 0:
|
| 156 |
+
self.final_corpus.append(entry_dict[key].pop(0))
|
| 157 |
+
self.final_targets.append(key)
|
| 158 |
+
n+=1
|
| 159 |
+
|
| 160 |
+
self.corpus = np.array(self.final_corpus)
|
| 161 |
+
self.targets = np.array(self.final_targets)"""
|
| 162 |
+
|
| 163 |
+
self.max_len = 0
|
| 164 |
+
for sent in self.corpus:
|
| 165 |
+
input_ids = self.tokenizer.encode(sent, add_special_tokens=True)
|
| 166 |
+
self.max_len = max(self.max_len, len(input_ids))
|
| 167 |
+
|
| 168 |
+
self.max_len = min(self.max_len, 512)
|
| 169 |
+
print(f"Max length : {self.max_len}")
|
| 170 |
+
print(f"Nombre de classes : {self.num_class}")
|
| 171 |
+
print(f"Exemples de targets : {np.unique(self.targets)}")
|
| 172 |
+
|
| 173 |
+
# Save max_len
|
| 174 |
+
with open(saved_max_len_path, "wb") as f:
|
| 175 |
+
pickle.dump(self.max_len, f)
|
| 176 |
+
print(f"max_len saved to {saved_max_len_path}")
|
| 177 |
+
|
| 178 |
+
def __len__(self):
|
| 179 |
+
return len(self.elem_cats)
|
| 180 |
+
|
| 181 |
+
def __getitem__(self, idx):
|
| 182 |
+
text = self.corpus[idx]
|
| 183 |
+
target = self.targets[idx]
|
| 184 |
+
|
| 185 |
+
# Vérification : target doit être entre 0 et num_class - 1
|
| 186 |
+
if target < 0 or target >= self.num_class:
|
| 187 |
+
raise ValueError(
|
| 188 |
+
f"Target out of bounds: {target} not in [0, {self.num_class - 1}]"
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
encoded_input = self.tokenizer.encode_plus(
|
| 192 |
+
text,
|
| 193 |
+
max_length=self.max_len,
|
| 194 |
+
padding="max_length",
|
| 195 |
+
truncation=True,
|
| 196 |
+
return_tensors="pt",
|
| 197 |
+
)
|
| 198 |
+
return (
|
| 199 |
+
encoded_input["input_ids"].squeeze(0),
|
| 200 |
+
encoded_input["attention_mask"].squeeze(0),
|
| 201 |
+
torch.tensor(target, dtype=torch.long),
|
| 202 |
+
self.audio_files[idx],
|
| 203 |
+
)
|
| 204 |
+
# return np.array(encoded_input), torch.tensor(target, dtype=torch.long)
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
class CustomBertModel(nn.Module):
|
| 208 |
+
def __init__(self, num_class, model_path=BERT_BASE_MODEL):
|
| 209 |
+
super(CustomBertModel, self).__init__()
|
| 210 |
+
self.model_path = model_path
|
| 211 |
+
self.num_class = num_class
|
| 212 |
+
|
| 213 |
+
self.bert = BertModel.from_pretrained(self.model_path)
|
| 214 |
+
# Freeze of the parameters of this layer for the training process
|
| 215 |
+
for param in self.bert.parameters():
|
| 216 |
+
param.requires_grad = False
|
| 217 |
+
# self.proj_intermediate = nn.Sequential(nn.Linear(self.bert.config.hidden_size, INTERMEDIATE_CUSTOM_BERT_LAYER_SIZE),nn.Linear(INTERMEDIATE_CUSTOM_BERT_LAYER_SIZE, INTERMEDIATE_CUSTOM_BERT_LAYER_SIZE), INTERMEDIATE_CUSTOM_BERT_LAYER_SIZE),nn.Linear(INTERMEDIATE_CUSTOM_BERT_LAYER_SIZE, INTERMEDIATE_CUSTOM_BERT_LAYER_SIZE))
|
| 218 |
+
self.proj_lin = nn.Linear(self.bert.config.hidden_size, self.num_class)
|
| 219 |
+
|
| 220 |
+
def forward(self, input_ids, attention_mask):
|
| 221 |
+
x = self.bert(input_ids=input_ids, attention_mask=attention_mask)
|
| 222 |
+
|
| 223 |
+
x = x.last_hidden_state[:, 0, :]
|
| 224 |
+
# x = self.proj_intermediate(x)
|
| 225 |
+
x = self.proj_lin(x)
|
| 226 |
+
return x
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
def train_step(model, train_dataloader, loss_fn, optimizer):
|
| 230 |
+
|
| 231 |
+
num_iterations = len(train_dataloader)
|
| 232 |
+
|
| 233 |
+
for i in range(NUM_EPOCHS):
|
| 234 |
+
print(f"Training Epoch n° {i}")
|
| 235 |
+
model.train()
|
| 236 |
+
|
| 237 |
+
for j, batch in enumerate(train_dataloader):
|
| 238 |
+
|
| 239 |
+
input = batch[:][0]
|
| 240 |
+
attention = batch[:][1]
|
| 241 |
+
target = batch[:][2]
|
| 242 |
+
|
| 243 |
+
output = model(input.to(device), attention.to(device))
|
| 244 |
+
|
| 245 |
+
loss = loss_fn(output, target.to(device))
|
| 246 |
+
|
| 247 |
+
optimizer.zero_grad()
|
| 248 |
+
loss.backward()
|
| 249 |
+
optimizer.step()
|
| 250 |
+
|
| 251 |
+
run.log({"Training loss": loss})
|
| 252 |
+
|
| 253 |
+
print(f"Epoch {i+1} | step {j+1} / {num_iterations} | loss : {loss}")
|
| 254 |
+
|
| 255 |
+
# Save model
|
| 256 |
+
torch.save(model.state_dict(), SAVED_CUSTOM_BERT_MODEL_PATH)
|
| 257 |
+
print(f"Custom BERT Model saved at {SAVED_CUSTOM_BERT_MODEL_PATH}")
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
def eval_step(
|
| 261 |
+
test_dataloader,
|
| 262 |
+
loss_fn,
|
| 263 |
+
num_class,
|
| 264 |
+
saved_model_path=SAVED_CUSTOM_BERT_MODEL_PATH,
|
| 265 |
+
saved_target_cats_path=SAVED_TARGET_CAT_PATH,
|
| 266 |
+
):
|
| 267 |
+
|
| 268 |
+
y_pred = []
|
| 269 |
+
y_true = []
|
| 270 |
+
|
| 271 |
+
num_iterations = len(test_dataloader)
|
| 272 |
+
# Load the saved model
|
| 273 |
+
saved_model = CustomBertModel(num_class)
|
| 274 |
+
saved_model.load_state_dict(
|
| 275 |
+
torch.load(saved_model_path, weights_only=False)
|
| 276 |
+
) # Explicitly set weights_only to False
|
| 277 |
+
saved_model = saved_model.to(device)
|
| 278 |
+
saved_model.eval() # Set the model to evaluation mode
|
| 279 |
+
print(f"Model loaded from path :{saved_model_path}")
|
| 280 |
+
|
| 281 |
+
with torch.no_grad():
|
| 282 |
+
for j, batch in enumerate(test_dataloader):
|
| 283 |
+
|
| 284 |
+
input = batch[:][0]
|
| 285 |
+
attention = batch[:][1]
|
| 286 |
+
target = batch[:][2]
|
| 287 |
+
|
| 288 |
+
output = saved_model(input.to(device), attention.to(device))
|
| 289 |
+
|
| 290 |
+
loss = loss_fn(output, target.to(device))
|
| 291 |
+
|
| 292 |
+
run.log({"Eval loss": loss})
|
| 293 |
+
print(f"Step {j+1} / {num_iterations} | Eval loss : {loss}")
|
| 294 |
+
y_pred.extend(output.cpu().numpy().argmax(axis=1))
|
| 295 |
+
y_true.extend(target.cpu().numpy())
|
| 296 |
+
|
| 297 |
+
class_labels = torch.load(saved_target_cats_path, weights_only=False)
|
| 298 |
+
|
| 299 |
+
true_labels = [class_labels[i] for i in y_true]
|
| 300 |
+
pred_labels = [class_labels[i] for i in y_pred]
|
| 301 |
+
|
| 302 |
+
print(f"Accuracy : {accuracy_score(true_labels, pred_labels)}")
|
| 303 |
+
|
| 304 |
+
cm = confusion_matrix(true_labels, pred_labels, labels=class_labels)
|
| 305 |
+
df_cm = pd.DataFrame(cm, index=class_labels, columns=class_labels)
|
| 306 |
+
sns.heatmap(df_cm, annot=True, fmt="d")
|
| 307 |
+
plt.title("Confusion Matrix for Sentiment analysis dataset")
|
| 308 |
+
plt.xlabel("Predicted Label")
|
| 309 |
+
plt.ylabel("True Label")
|
| 310 |
+
plt.show()
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
def eval_pipeline_step(
|
| 314 |
+
test_dataloader,
|
| 315 |
+
loss_fn,
|
| 316 |
+
num_class,
|
| 317 |
+
audio_model_dir=SAVED_AUDIO_MODEL_DIR_PATH,
|
| 318 |
+
audio_model_name=MODEL_NAME,
|
| 319 |
+
audio_processor_name=PROCESSOR_NAME,
|
| 320 |
+
saved_model_path=SAVED_CUSTOM_BERT_MODEL_PATH,
|
| 321 |
+
saved_target_cats_path=SAVED_TARGET_CAT_PATH,
|
| 322 |
+
):
|
| 323 |
+
|
| 324 |
+
y_pred = []
|
| 325 |
+
y_true = []
|
| 326 |
+
|
| 327 |
+
num_iterations = len(test_dataloader)
|
| 328 |
+
# Load the saved model
|
| 329 |
+
saved_model = CustomBertModel(num_class)
|
| 330 |
+
saved_model.load_state_dict(
|
| 331 |
+
torch.load(saved_model_path, weights_only=False)
|
| 332 |
+
) # Explicitly set weights_only to False
|
| 333 |
+
saved_model = saved_model.to(device)
|
| 334 |
+
saved_model.eval() # Set the model to evaluation mode
|
| 335 |
+
print(f"Model loaded from path :{saved_model_path}")
|
| 336 |
+
|
| 337 |
+
audio_processor = None
|
| 338 |
+
audio_model = None
|
| 339 |
+
|
| 340 |
+
processor_path = os.path.join(
|
| 341 |
+
audio_model_dir, audio_processor_name
|
| 342 |
+
) # Check for a key file, like the preprocessor config
|
| 343 |
+
model_path = os.path.join(
|
| 344 |
+
audio_model_dir, audio_model_name
|
| 345 |
+
) # Check for a key file, like the model config
|
| 346 |
+
|
| 347 |
+
if (
|
| 348 |
+
os.path.exists(audio_model_dir)
|
| 349 |
+
and os.path.exists(processor_path)
|
| 350 |
+
and os.path.exists(model_path)
|
| 351 |
+
):
|
| 352 |
+
print("Local Wav2Vec2 processor and model found. Loading from local directory.")
|
| 353 |
+
audio_processor = Wav2Vec2Processor.from_pretrained(audio_model_dir)
|
| 354 |
+
audio_model = Wav2Vec2ForCTC.from_pretrained(audio_model_dir)
|
| 355 |
+
else:
|
| 356 |
+
print(
|
| 357 |
+
"Local Wav2Vec2 processor and model not found. Downloading from Hugging Face Hub."
|
| 358 |
+
)
|
| 359 |
+
audio_processor = Wav2Vec2Processor.from_pretrained(AUDIO_BASE_MODEL)
|
| 360 |
+
audio_model = Wav2Vec2ForCTC.from_pretrained(AUDIO_BASE_MODEL)
|
| 361 |
+
|
| 362 |
+
# Optionally save the downloaded model and processor for future use
|
| 363 |
+
audio_processor.save_pretrained(audio_model_dir)
|
| 364 |
+
audio_model.save_pretrained(audio_model_dir)
|
| 365 |
+
print(f"Wav2Vec2 processor and model downloaded and saved to {audio_model_dir}")
|
| 366 |
+
|
| 367 |
+
# Move audio model to GPU
|
| 368 |
+
audio_model = audio_model.to(device)
|
| 369 |
+
audio_model.eval()
|
| 370 |
+
|
| 371 |
+
with torch.no_grad():
|
| 372 |
+
for j, batch in enumerate(test_dataloader):
|
| 373 |
+
|
| 374 |
+
target = batch[:][2]
|
| 375 |
+
audio_file_path = batch[:][3]
|
| 376 |
+
|
| 377 |
+
encoded_inputs = []
|
| 378 |
+
attention_masks = []
|
| 379 |
+
|
| 380 |
+
bundle = torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H
|
| 381 |
+
sample_rate = bundle.sample_rate
|
| 382 |
+
|
| 383 |
+
for audio_file in audio_file_path:
|
| 384 |
+
waveform, sr = torchaudio.load(audio_file)
|
| 385 |
+
if sr != sample_rate:
|
| 386 |
+
print("Resampling")
|
| 387 |
+
resampler = torchaudio.transforms.Resample(
|
| 388 |
+
orig_freq=sr, new_freq=sample_rate
|
| 389 |
+
)
|
| 390 |
+
waveform = resampler(waveform)
|
| 391 |
+
|
| 392 |
+
# Move waveform to GPU before processing
|
| 393 |
+
input_values = audio_processor(
|
| 394 |
+
waveform.squeeze().numpy(),
|
| 395 |
+
sampling_rate=sample_rate,
|
| 396 |
+
return_tensors="pt",
|
| 397 |
+
).input_values.to(device)
|
| 398 |
+
|
| 399 |
+
with torch.no_grad():
|
| 400 |
+
logits = audio_model(input_values).logits
|
| 401 |
+
predicted_ids_hf = torch.argmax(logits, dim=-1)
|
| 402 |
+
transcript_hf = audio_processor.decode(
|
| 403 |
+
predicted_ids_hf[0].cpu().numpy()
|
| 404 |
+
) # Move predicted_ids_hf back to CPU for decoding
|
| 405 |
+
transcript_hf = (
|
| 406 |
+
transcript_hf.lower() if transcript_hf is not None else None
|
| 407 |
+
)
|
| 408 |
+
|
| 409 |
+
encoded_input = test_dataloader.dataset.tokenizer.encode_plus(
|
| 410 |
+
transcript_hf,
|
| 411 |
+
max_length=test_dataloader.dataset.max_len,
|
| 412 |
+
padding="max_length",
|
| 413 |
+
truncation=True,
|
| 414 |
+
return_tensors="pt",
|
| 415 |
+
)
|
| 416 |
+
encoded_inputs.append(encoded_input["input_ids"].squeeze(0))
|
| 417 |
+
attention_masks.append(encoded_input["attention_mask"].squeeze(0))
|
| 418 |
+
|
| 419 |
+
text_input = torch.stack(encoded_inputs)
|
| 420 |
+
attention = torch.stack(attention_masks)
|
| 421 |
+
|
| 422 |
+
output = saved_model(text_input.to(device), attention.to(device))
|
| 423 |
+
|
| 424 |
+
loss = loss_fn(output, target.to(device))
|
| 425 |
+
|
| 426 |
+
run.log({"Pipeline Eval loss": loss})
|
| 427 |
+
print(f"Step {j+1} / {num_iterations} | Pipeline Eval loss : {loss}")
|
| 428 |
+
|
| 429 |
+
y_pred.extend(output.cpu().numpy().argmax(axis=1))
|
| 430 |
+
y_true.extend(target.cpu().numpy())
|
| 431 |
+
|
| 432 |
+
class_labels = torch.load(saved_target_cats_path, weights_only=False)
|
| 433 |
+
|
| 434 |
+
true_labels = [class_labels[i] for i in y_true]
|
| 435 |
+
pred_labels = [class_labels[i] for i in y_pred]
|
| 436 |
+
|
| 437 |
+
print(f"Pipeline Accuracy : {accuracy_score(true_labels, pred_labels)}")
|
| 438 |
+
|
| 439 |
+
cm = confusion_matrix(true_labels, pred_labels, labels=class_labels)
|
| 440 |
+
df_cm = pd.DataFrame(cm, index=class_labels, columns=class_labels)
|
| 441 |
+
sns.heatmap(df_cm, annot=True, fmt="d")
|
| 442 |
+
plt.title("Confusion Matrix for Sentiment analysis Pipeline")
|
| 443 |
+
plt.xlabel("Predicted Label")
|
| 444 |
+
plt.ylabel("True Label")
|
| 445 |
+
plt.show()
|
| 446 |
+
|
| 447 |
+
|
| 448 |
+
def get_audio_sentiment(
|
| 449 |
+
input_audio_path,
|
| 450 |
+
num_class=len(SENTIMENT_MODALITIES),
|
| 451 |
+
audio_model_dir=SAVED_AUDIO_MODEL_DIR_PATH,
|
| 452 |
+
audio_model_name=MODEL_NAME,
|
| 453 |
+
audio_processor_name=PROCESSOR_NAME,
|
| 454 |
+
saved_model_path=SAVED_CUSTOM_BERT_MODEL_PATH,
|
| 455 |
+
saved_target_cats_path=SAVED_TARGET_CAT_PATH,
|
| 456 |
+
tokenizer_save_directory=SAVED_CUSTOM_BERT_TOKENIZER_DIR,
|
| 457 |
+
saved_max_len_path=SAVED_CUSTOM_BERT_TOKEN_MAX_LEN_PATH,
|
| 458 |
+
):
|
| 459 |
+
# Load the saved model
|
| 460 |
+
saved_model = CustomBertModel(num_class)
|
| 461 |
+
saved_model.load_state_dict(
|
| 462 |
+
torch.load(
|
| 463 |
+
saved_model_path, weights_only=False, map_location=torch.device(device)
|
| 464 |
+
)
|
| 465 |
+
) # Explicitly set weights_only to False
|
| 466 |
+
saved_model = saved_model.to(device)
|
| 467 |
+
saved_model.eval() # Set the model to evaluation mode
|
| 468 |
+
print(f"Model loaded from path :{saved_model_path}")
|
| 469 |
+
loaded_tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_directory)
|
| 470 |
+
max_len = 0
|
| 471 |
+
with open(saved_max_len_path, "rb") as f:
|
| 472 |
+
max_len = pickle.load(f)
|
| 473 |
+
|
| 474 |
+
audio_processor = None
|
| 475 |
+
audio_model = None
|
| 476 |
+
|
| 477 |
+
processor_path = os.path.join(
|
| 478 |
+
audio_model_dir, audio_processor_name
|
| 479 |
+
) # Check for a key file, like the preprocessor config
|
| 480 |
+
model_path = os.path.join(
|
| 481 |
+
audio_model_dir, audio_model_name
|
| 482 |
+
) # Check for a key file, like the model config
|
| 483 |
+
|
| 484 |
+
if (
|
| 485 |
+
os.path.exists(audio_model_dir)
|
| 486 |
+
and os.path.exists(processor_path)
|
| 487 |
+
and os.path.exists(model_path)
|
| 488 |
+
):
|
| 489 |
+
print("Local Wav2Vec2 processor and model found. Loading from local directory.")
|
| 490 |
+
audio_processor = Wav2Vec2Processor.from_pretrained(audio_model_dir)
|
| 491 |
+
audio_model = Wav2Vec2ForCTC.from_pretrained(audio_model_dir)
|
| 492 |
+
else:
|
| 493 |
+
print(
|
| 494 |
+
"Local Wav2Vec2 processor and model not found. Downloading from Hugging Face Hub."
|
| 495 |
+
)
|
| 496 |
+
audio_processor = Wav2Vec2Processor.from_pretrained(AUDIO_BASE_MODEL)
|
| 497 |
+
audio_model = Wav2Vec2ForCTC.from_pretrained(AUDIO_BASE_MODEL)
|
| 498 |
+
|
| 499 |
+
# Optionally save the downloaded model and processor for future use
|
| 500 |
+
audio_processor.save_pretrained(audio_model_dir)
|
| 501 |
+
audio_model.save_pretrained(audio_model_dir)
|
| 502 |
+
print(f"Wav2Vec2 processor and model downloaded and saved to {audio_model_dir}")
|
| 503 |
+
|
| 504 |
+
# Move audio model to GPU
|
| 505 |
+
audio_model = audio_model.to(device)
|
| 506 |
+
audio_model.eval()
|
| 507 |
+
|
| 508 |
+
with torch.no_grad():
|
| 509 |
+
audio_file_path = input_audio_path
|
| 510 |
+
|
| 511 |
+
encoded_inputs = []
|
| 512 |
+
attention_masks = []
|
| 513 |
+
|
| 514 |
+
bundle = torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H
|
| 515 |
+
sample_rate = bundle.sample_rate
|
| 516 |
+
|
| 517 |
+
waveform, sr = torchaudio.load(audio_file_path)
|
| 518 |
+
if sr != sample_rate:
|
| 519 |
+
print("Resampling")
|
| 520 |
+
resampler = torchaudio.transforms.Resample(
|
| 521 |
+
orig_freq=sr, new_freq=sample_rate
|
| 522 |
+
)
|
| 523 |
+
waveform = resampler(waveform)
|
| 524 |
+
|
| 525 |
+
# Move waveform to GPU before processing
|
| 526 |
+
input_values = audio_processor(
|
| 527 |
+
waveform.squeeze().numpy(), sampling_rate=sample_rate, return_tensors="pt"
|
| 528 |
+
).input_values.to(device)
|
| 529 |
+
|
| 530 |
+
with torch.no_grad():
|
| 531 |
+
logits = audio_model(input_values).logits
|
| 532 |
+
predicted_ids_hf = torch.argmax(logits, dim=-1)
|
| 533 |
+
transcript_hf = audio_processor.decode(
|
| 534 |
+
predicted_ids_hf[0].cpu().numpy()
|
| 535 |
+
) # Move predicted_ids_hf back to CPU for decoding
|
| 536 |
+
transcript_hf = transcript_hf.lower() if transcript_hf is not None else None
|
| 537 |
+
|
| 538 |
+
encoded_input = loaded_tokenizer.encode_plus(
|
| 539 |
+
transcript_hf,
|
| 540 |
+
max_length=max_len,
|
| 541 |
+
padding="max_length",
|
| 542 |
+
truncation=True,
|
| 543 |
+
return_tensors="pt",
|
| 544 |
+
)
|
| 545 |
+
encoded_inputs.append(encoded_input["input_ids"].squeeze(0))
|
| 546 |
+
attention_masks.append(encoded_input["attention_mask"].squeeze(0))
|
| 547 |
+
|
| 548 |
+
# Stack the lists of tensors before moving to device
|
| 549 |
+
text_input = torch.stack(encoded_inputs)
|
| 550 |
+
attention = torch.stack(attention_masks)
|
| 551 |
+
|
| 552 |
+
output = saved_model(text_input.to(device), attention.to(device))
|
| 553 |
+
class_labels = torch.load(saved_target_cats_path, weights_only=False)
|
| 554 |
+
|
| 555 |
+
return class_labels[output.cpu().numpy().argmax(axis=1)[0]]
|
| 556 |
+
|
| 557 |
+
|
| 558 |
+
# Login using e.g. `huggingface-cli login` to access this dataset
|
| 559 |
+
# global_train_ds = load_dataset("asapp/slue-voxceleb", streaming=True, token='jrmd_hf_token')
|
| 560 |
+
# global_train_ds = load_dataset('asapp/slue',token='jrmd_hf_token')
|
| 561 |
+
# global_train_ds = load_dataset('voxceleb',token='jrmd_hf_token')
|
| 562 |
+
|
| 563 |
+
# global_test_ds = load_dataset("asapp/slue", "voxceleb", split="test", token='jrmd_hf_token')
|
| 564 |
+
|
| 565 |
+
# Get torchaudio pipeline components
|
| 566 |
+
"""bundle = torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H
|
| 567 |
+
#model = bundle.get_model()
|
| 568 |
+
#labels = bundle.get_labels()
|
| 569 |
+
sample_rate = bundle.sample_rate"""
|
| 570 |
+
|
| 571 |
+
"""waveform, sr = torchaudio.load("/content/dev_raw/id10012_0AXjxNXiEzo_00001.flac")
|
| 572 |
+
# Resample if sr != sample_rate (or model_hf.config.sampling_rate)
|
| 573 |
+
if sr != sample_rate:
|
| 574 |
+
print("Resampling")
|
| 575 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=sample_rate)
|
| 576 |
+
waveform = resampler(waveform)"""
|
| 577 |
+
|
| 578 |
+
# Using torchaudio pipeline - Manual Greedy Decoding
|
| 579 |
+
"""with torch.no_grad():
|
| 580 |
+
emission = model(waveform)"""
|
| 581 |
+
|
| 582 |
+
# Assuming emission is log-probabilities or logits
|
| 583 |
+
# Perform greedy decoding: get the index of the max probability at each time step
|
| 584 |
+
|
| 585 |
+
# predicted_ids_torchaudio = torch.argmax(emission[0], dim=-1)
|
| 586 |
+
|
| 587 |
+
# Process the predicted IDs: remove consecutive duplicates and blank tokens
|
| 588 |
+
# Assuming the blank token is at index 0 (which is common for CTC, check labels if unsure)
|
| 589 |
+
"""processed_ids_torchaudio = []
|
| 590 |
+
for id in predicted_ids_torchaudio[0]: # emission has shape (batch_size, num_frames, num_labels)
|
| 591 |
+
if id.item() != 0 and (len(processed_ids_torchaudio) == 0 or id.item() != processed_ids_torchaudio[-1]):
|
| 592 |
+
processed_ids_torchaudio.append(id.item())"""
|
| 593 |
+
|
| 594 |
+
"""# Convert token IDs to transcript using labels
|
| 595 |
+
#transcript = "".join([labels[id] for id in processed_ids_torchaudio])
|
| 596 |
+
|
| 597 |
+
# Using Hugging Face transformers
|
| 598 |
+
# Note: processor and model_hf are defined in cell DnJDG6P3BTjZ
|
| 599 |
+
# To make this cell fully self-contained, you might want to include their definitions here as well.
|
| 600 |
+
# For now, assuming they are defined in a previously executed cell.
|
| 601 |
+
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
| 602 |
+
model_hf = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
| 603 |
+
|
| 604 |
+
# Load and resample waveform
|
| 605 |
+
waveform, sr = torchaudio.load("/content/dev_raw/id10012_0AXjxNXiEzo_00001.flac")
|
| 606 |
+
if sr != sample_rate:
|
| 607 |
+
print("Resampling")
|
| 608 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=sample_rate)
|
| 609 |
+
waveform = resampler(waveform)
|
| 610 |
+
|
| 611 |
+
input_values = processor(waveform.squeeze().numpy(), sampling_rate=sample_rate, return_tensors="pt").input_values
|
| 612 |
+
with torch.no_grad():
|
| 613 |
+
logits = model_hf(input_values).logits
|
| 614 |
+
predicted_ids_hf = torch.argmax(logits, dim=-1)
|
| 615 |
+
transcript_hf = processor.decode(predicted_ids_hf[0])
|
| 616 |
+
|
| 617 |
+
#print("Torchaudio Transcript:", transcript)
|
| 618 |
+
print("Hugging Face Transcript:", transcript_hf)"""
|
| 619 |
+
|
| 620 |
+
if __name__ == "__main__":
|
| 621 |
+
|
| 622 |
+
wandb.login(key=wandb_token)
|
| 623 |
+
run = wandb.init(project="DIT-Wav2Vec-Bert-Sentiment-Analysis-project")
|
| 624 |
+
bert_train_dataset = CustomBertDataset(TRAIN_DS_PATH, "fine-tune_raw")
|
| 625 |
+
bert_test_dataset = CustomBertDataset(TEST_DS_PATH, "test_raw")
|
| 626 |
+
print(f"Size of bert dataset : {len(bert_train_dataset)}")
|
| 627 |
+
"""train_dataset = Subset(our_bert_dataset, range(int(len(our_bert_dataset)*0.8)))
|
| 628 |
+
test_dataset = Subset(our_bert_dataset, range(int(len(our_bert_dataset)*0.8), len(our_bert_dataset)))"""
|
| 629 |
+
|
| 630 |
+
train_dataloader = DataLoader(
|
| 631 |
+
bert_train_dataset, batch_size=BATCH_SIZE, shuffle=True
|
| 632 |
+
)
|
| 633 |
+
test_dataloader = DataLoader(
|
| 634 |
+
bert_test_dataset, batch_size=BATCH_SIZE, shuffle=False
|
| 635 |
+
)
|
| 636 |
+
|
| 637 |
+
our_bert_model = CustomBertModel(bert_train_dataset.num_class)
|
| 638 |
+
our_bert_model = our_bert_model.to(device)
|
| 639 |
+
|
| 640 |
+
loss_fn = nn.CrossEntropyLoss()
|
| 641 |
+
optimizer = optim.SGD(
|
| 642 |
+
filter(lambda p: p.requires_grad, our_bert_model.parameters()), lr=0.01
|
| 643 |
+
)
|
| 644 |
+
|
| 645 |
+
train_step(our_bert_model, train_dataloader, loss_fn, optimizer)
|
| 646 |
+
eval_step(test_dataloader, loss_fn, bert_train_dataset.num_class)
|
| 647 |
+
eval_pipeline_step(test_dataloader, loss_fn, bert_train_dataset.num_class)
|
| 648 |
+
|
| 649 |
+
test_inference_audio_path = "/content/dev_raw/id10012_0AXjxNXiEzo_00001.flac"
|
| 650 |
+
print(get_audio_sentiment(test_inference_audio_path))
|
bert_tokenizer_local/special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
bert_tokenizer_local/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
bert_tokenizer_local/tokenizer_config.json
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": false,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_lower_case": true,
|
| 47 |
+
"extra_special_tokens": {},
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"model_max_length": 512,
|
| 50 |
+
"pad_token": "[PAD]",
|
| 51 |
+
"sep_token": "[SEP]",
|
| 52 |
+
"strip_accents": null,
|
| 53 |
+
"tokenize_chinese_chars": true,
|
| 54 |
+
"tokenizer_class": "BertTokenizer",
|
| 55 |
+
"unk_token": "[UNK]"
|
| 56 |
+
}
|
bert_tokenizer_local/vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
categories.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ce4f35be86b2eecde01dac17af9f2885aa5dde5c90ab4770871d4e7f6d7fe92d
|
| 3 |
+
size 1196
|
custom_bert_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b962a92b9dcb34ba0659d0fda0f5a312bbe6f5e7d13060413dd3abde366c517c
|
| 3 |
+
size 438021794
|
demo.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
import audiospeechsentimentanalysis_jrmdiouf as assaj
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def find_sentiment(input):
|
| 7 |
+
return assaj.get_audio_sentiment(input)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
with gr.Blocks() as demo:
|
| 11 |
+
gr.Markdown(
|
| 12 |
+
"<h1 style='text-align: center;'>CUSTOM MODEL BASED ON WAV2VEC2 AND BERT BASE TO ANALYZE SPEECH SENTIMENT</h1>"
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
gr.Interface(
|
| 16 |
+
fn=find_sentiment,
|
| 17 |
+
inputs=[gr.Audio(type="filepath")],
|
| 18 |
+
outputs=["text"],
|
| 19 |
+
live=False,
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
gr.Markdown(
|
| 23 |
+
"<h2 style='text-align: center;'>Speech sentiment analysis model loss during training and eval time</h2>"
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
with gr.Row():
|
| 27 |
+
gr.Image(value="wandb_chart_train.png", label="Training Loss", width=300)
|
| 28 |
+
gr.Image(value="wandb_chart_eval.png", label="Pipeline eval Loss", width=300)
|
| 29 |
+
|
| 30 |
+
gr.Markdown(
|
| 31 |
+
"<h2 style='text-align: center;'>Confusion matrix obtained from model evaluation on VoxCeleb dataset</h2>"
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
with gr.Row():
|
| 35 |
+
gr.Image(
|
| 36 |
+
value="SpeechSentimentModelConfusionMatrix.png",
|
| 37 |
+
label="Confusion Matrix from model evaluation",
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
with gr.Row():
|
| 41 |
+
gr.Markdown(
|
| 42 |
+
"<h3><span style='text-decoration:underline;'>Pipeline Accuracy</span> : <span style='font-style:italic;'>0.758</span></h3>"
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
demo.launch(share=True)
|
demo_api_client.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
from gradio_client import Client, handle_file
|
| 4 |
+
|
| 5 |
+
client = Client("http://localhost:7860/")
|
| 6 |
+
|
| 7 |
+
# Use a raw string for the file path
|
| 8 |
+
audio_file_path = r"E:\00.Divers\DIT\04.Cours\M2\06.DS-DeepLearning2\Examen\Dev\id10012_0AXjxNXiEzo_00001.flac"
|
| 9 |
+
|
| 10 |
+
# Verify the file exists (good practice!)
|
| 11 |
+
if not os.path.exists(audio_file_path):
|
| 12 |
+
print(f"Error: The file '{audio_file_path}' does not exist. Please check the path.")
|
| 13 |
+
else:
|
| 14 |
+
print(f"File found: {audio_file_path}")
|
| 15 |
+
result = client.predict(input=handle_file(audio_file_path), api_name="/predict")
|
| 16 |
+
print(result)
|
id10012_0AXjxNXiEzo_00001.flac
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8f1be9a6c5fa7421364e026e4294bf4976d15d7a61dc397c9385b796c619299f
|
| 3 |
+
size 78322
|
max_len.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0a2b0264bcc30013ba2d474c3e149ba4401daaa47d88d874ccaba45d3c1518fb
|
| 3 |
+
size 5
|
wandb_chart_eval.png
ADDED
|
Git LFS Details
|
wandb_chart_train.png
ADDED
|
Git LFS Details
|
wav2vec2_local/config.json
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"activation_dropout": 0.1,
|
| 3 |
+
"adapter_attn_dim": null,
|
| 4 |
+
"adapter_kernel_size": 3,
|
| 5 |
+
"adapter_stride": 2,
|
| 6 |
+
"add_adapter": false,
|
| 7 |
+
"apply_spec_augment": true,
|
| 8 |
+
"architectures": [
|
| 9 |
+
"Wav2Vec2ForCTC"
|
| 10 |
+
],
|
| 11 |
+
"attention_dropout": 0.1,
|
| 12 |
+
"bos_token_id": 1,
|
| 13 |
+
"classifier_proj_size": 256,
|
| 14 |
+
"codevector_dim": 256,
|
| 15 |
+
"contrastive_logits_temperature": 0.1,
|
| 16 |
+
"conv_bias": false,
|
| 17 |
+
"conv_dim": [
|
| 18 |
+
512,
|
| 19 |
+
512,
|
| 20 |
+
512,
|
| 21 |
+
512,
|
| 22 |
+
512,
|
| 23 |
+
512,
|
| 24 |
+
512
|
| 25 |
+
],
|
| 26 |
+
"conv_kernel": [
|
| 27 |
+
10,
|
| 28 |
+
3,
|
| 29 |
+
3,
|
| 30 |
+
3,
|
| 31 |
+
3,
|
| 32 |
+
2,
|
| 33 |
+
2
|
| 34 |
+
],
|
| 35 |
+
"conv_stride": [
|
| 36 |
+
5,
|
| 37 |
+
2,
|
| 38 |
+
2,
|
| 39 |
+
2,
|
| 40 |
+
2,
|
| 41 |
+
2,
|
| 42 |
+
2
|
| 43 |
+
],
|
| 44 |
+
"ctc_loss_reduction": "sum",
|
| 45 |
+
"ctc_zero_infinity": false,
|
| 46 |
+
"diversity_loss_weight": 0.1,
|
| 47 |
+
"do_stable_layer_norm": false,
|
| 48 |
+
"eos_token_id": 2,
|
| 49 |
+
"feat_extract_activation": "gelu",
|
| 50 |
+
"feat_extract_dropout": 0.0,
|
| 51 |
+
"feat_extract_norm": "group",
|
| 52 |
+
"feat_proj_dropout": 0.1,
|
| 53 |
+
"feat_quantizer_dropout": 0.0,
|
| 54 |
+
"final_dropout": 0.1,
|
| 55 |
+
"gradient_checkpointing": false,
|
| 56 |
+
"hidden_act": "gelu",
|
| 57 |
+
"hidden_dropout": 0.1,
|
| 58 |
+
"hidden_dropout_prob": 0.1,
|
| 59 |
+
"hidden_size": 768,
|
| 60 |
+
"initializer_range": 0.02,
|
| 61 |
+
"intermediate_size": 3072,
|
| 62 |
+
"layer_norm_eps": 1e-05,
|
| 63 |
+
"layerdrop": 0.1,
|
| 64 |
+
"mask_feature_length": 10,
|
| 65 |
+
"mask_feature_min_masks": 0,
|
| 66 |
+
"mask_feature_prob": 0.0,
|
| 67 |
+
"mask_time_length": 10,
|
| 68 |
+
"mask_time_min_masks": 2,
|
| 69 |
+
"mask_time_prob": 0.05,
|
| 70 |
+
"model_type": "wav2vec2",
|
| 71 |
+
"num_adapter_layers": 3,
|
| 72 |
+
"num_attention_heads": 12,
|
| 73 |
+
"num_codevector_groups": 2,
|
| 74 |
+
"num_codevectors_per_group": 320,
|
| 75 |
+
"num_conv_pos_embedding_groups": 16,
|
| 76 |
+
"num_conv_pos_embeddings": 128,
|
| 77 |
+
"num_feat_extract_layers": 7,
|
| 78 |
+
"num_hidden_layers": 12,
|
| 79 |
+
"num_negatives": 100,
|
| 80 |
+
"output_hidden_size": 768,
|
| 81 |
+
"pad_token_id": 0,
|
| 82 |
+
"proj_codevector_dim": 256,
|
| 83 |
+
"tdnn_dilation": [
|
| 84 |
+
1,
|
| 85 |
+
2,
|
| 86 |
+
3,
|
| 87 |
+
1,
|
| 88 |
+
1
|
| 89 |
+
],
|
| 90 |
+
"tdnn_dim": [
|
| 91 |
+
512,
|
| 92 |
+
512,
|
| 93 |
+
512,
|
| 94 |
+
512,
|
| 95 |
+
1500
|
| 96 |
+
],
|
| 97 |
+
"tdnn_kernel": [
|
| 98 |
+
5,
|
| 99 |
+
3,
|
| 100 |
+
3,
|
| 101 |
+
1,
|
| 102 |
+
1
|
| 103 |
+
],
|
| 104 |
+
"torch_dtype": "float32",
|
| 105 |
+
"transformers_version": "4.53.1",
|
| 106 |
+
"use_weighted_layer_sum": false,
|
| 107 |
+
"vocab_size": 32,
|
| 108 |
+
"xvector_output_dim": 512
|
| 109 |
+
}
|
wav2vec2_local/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b516d7bf54ca328ba24c507c2d11ba2fd2be54991e2a7cd965aadba947cc532c
|
| 3 |
+
size 377611120
|
wav2vec2_local/preprocessor_config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_normalize": true,
|
| 3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
| 4 |
+
"feature_size": 1,
|
| 5 |
+
"padding_side": "right",
|
| 6 |
+
"padding_value": 0.0,
|
| 7 |
+
"processor_class": "Wav2Vec2Processor",
|
| 8 |
+
"return_attention_mask": false,
|
| 9 |
+
"sampling_rate": 16000
|
| 10 |
+
}
|
wav2vec2_local/special_tokens_map.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<s>",
|
| 3 |
+
"eos_token": "</s>",
|
| 4 |
+
"pad_token": "<pad>",
|
| 5 |
+
"unk_token": "<unk>"
|
| 6 |
+
}
|
wav2vec2_local/tokenizer_config.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<pad>",
|
| 5 |
+
"lstrip": true,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": true,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": false
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<s>",
|
| 13 |
+
"lstrip": true,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": true,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": false
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": true,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": true,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": false
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": true,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": true,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": false
|
| 34 |
+
}
|
| 35 |
+
},
|
| 36 |
+
"bos_token": "<s>",
|
| 37 |
+
"clean_up_tokenization_spaces": false,
|
| 38 |
+
"do_lower_case": false,
|
| 39 |
+
"do_normalize": true,
|
| 40 |
+
"eos_token": "</s>",
|
| 41 |
+
"extra_special_tokens": {},
|
| 42 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 43 |
+
"pad_token": "<pad>",
|
| 44 |
+
"processor_class": "Wav2Vec2Processor",
|
| 45 |
+
"replace_word_delimiter_char": " ",
|
| 46 |
+
"return_attention_mask": false,
|
| 47 |
+
"target_lang": null,
|
| 48 |
+
"tokenizer_class": "Wav2Vec2CTCTokenizer",
|
| 49 |
+
"unk_token": "<unk>",
|
| 50 |
+
"word_delimiter_token": "|"
|
| 51 |
+
}
|
wav2vec2_local/vocab.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"'": 27,
|
| 3 |
+
"</s>": 2,
|
| 4 |
+
"<pad>": 0,
|
| 5 |
+
"<s>": 1,
|
| 6 |
+
"<unk>": 3,
|
| 7 |
+
"A": 7,
|
| 8 |
+
"B": 24,
|
| 9 |
+
"C": 19,
|
| 10 |
+
"D": 14,
|
| 11 |
+
"E": 5,
|
| 12 |
+
"F": 20,
|
| 13 |
+
"G": 21,
|
| 14 |
+
"H": 11,
|
| 15 |
+
"I": 10,
|
| 16 |
+
"J": 29,
|
| 17 |
+
"K": 26,
|
| 18 |
+
"L": 15,
|
| 19 |
+
"M": 17,
|
| 20 |
+
"N": 9,
|
| 21 |
+
"O": 8,
|
| 22 |
+
"P": 23,
|
| 23 |
+
"Q": 30,
|
| 24 |
+
"R": 13,
|
| 25 |
+
"S": 12,
|
| 26 |
+
"T": 6,
|
| 27 |
+
"U": 16,
|
| 28 |
+
"V": 25,
|
| 29 |
+
"W": 18,
|
| 30 |
+
"X": 28,
|
| 31 |
+
"Y": 22,
|
| 32 |
+
"Z": 31,
|
| 33 |
+
"|": 4
|
| 34 |
+
}
|